Добірка наукової літератури з теми "Fiber optic displacement sensor"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Fiber optic displacement sensor".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Fiber optic displacement sensor":

1

Kleiza, V., and J. Verkelis. "Some Advanced Fiber-Optical Amplitude Modulated Reflection Displacement and Refractive Index Sensors." Nonlinear Analysis: Modelling and Control 12, no. 2 (April 25, 2007): 213–25. http://dx.doi.org/10.15388/na.2007.12.2.14712.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Some advanced fiber-optic amplitude modulated reflection displacement sensors and refractive index sensors have been developed. An improved three-fiber displacement sensor has been investigated as a refractive index sensor by computer simulations in a large interval of displacement. Some new regularities have been revealed. A reflection fiber-optic displacement sensor of novel configuration, consisting of double optical-pair fibers with a definite angle between the measuring tips of fibers in the pairs has been proposed, designed, and experimentally investigated to indicate and measure the displacement and refractive index of gas and liquid water solutions. The proposed displacement sensor and refractive index sensor configuration improves the measuring sensitivity in comparison with the known measuring methods. The refractive index sensor sensitivity Snsub = 4 × 10−7 RIU/mV was achieved. The displacement sensor sensitivity is Ssub = 1702 mV/µm in air (n = 1.00027).
2

Murthy, S. A. N., and B. B. Padhy. "Fiber Optic Displacement Sensor." Journal of Optics 29, no. 4 (December 2000): 179–91. http://dx.doi.org/10.1007/bf03354684.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zhao, Jinlei, Tengfei Bao, and Tribikram Kundu. "Wide Range Fiber Displacement Sensor Based on Bending Loss." Journal of Sensors 2016 (2016): 1–5. http://dx.doi.org/10.1155/2016/4201870.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A wide range fiber optic sensor system for displacement and crack monitoring is developed. In the proposed fiber optic sensor system, a number of fiber loops are formed from a single fiber and each fiber loop is used as a crack or displacement sensor. The feasibility and the dynamic range of the fiber sensor developed in this manner are investigated experimentally. Both glass fibers and plastic fibers are used in the experiments. Experimental results show that the new fiber optic sensor has a wide range (maximum range is 88 mm) and this sensor also has a high sensitivity for displacement and crack monitoring when an appropriate diameter of the fiber loop is selected as the sensor. Moreover, the proposed method is very simple and has low cost, so in situ application potential of the proposed sensor is high.
4

Wu, Chi. "Fiber optic angular displacement sensor." Review of Scientific Instruments 66, no. 6 (June 1995): 3672–75. http://dx.doi.org/10.1063/1.1145486.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Potapov, V. T., D. A. Sedykh, and A. A. Sokolovskii. "Fiber-optic interferometric displacement sensor." Measurement Techniques 31, no. 6 (June 1988): 561–63. http://dx.doi.org/10.1007/bf00867531.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Li, Yujie, Ming Zhang, and Yu Zhu. "Research on the estimation method of the point-of-interest (POI) displacement for ultra-precision flexible motion system based on functional optical fiber sensor." Mechanics & Industry 22 (2021): 48. http://dx.doi.org/10.1051/meca/2021047.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper proposes a POI displacement estimation method based on the functional optical fiber sensor and the phase modulation principle to improve the POI displacement estimation accuracy. First, the relation between the object deformation and the optic fiber lightwave phase is explained; the measurement principle of functional optical fiber sensor based on the heterodyne interference principle and its layout optimization method is proposed, and a POI displacement estimation model is presented based on the data approach. Secondly, a beam is taken as the simulation object, the optimal position and length of the optical fiber sensor are determined based on its simulation data. Finally, the experimental device is designed to verify the effectiveness of the POI displacement estimation method based on the optic fiber sensors. The frequency-domain plot of the signals shows that the optical fiber sensors can express the flexible deformation of the analyzed object well. The POI displacement estimation model with the fiber optic sensor signals as one of the inputs is constructed. Through estimating the test data, the error using the optical fiber sensor-based POI displacement estimation method proposed in this paper reduces by more than 61% compared to the rigid body-based assumption estimation method.
7

Wylie, Michael T. V., Bruce G. Colpitts, and Anthony W. Brown. "Fiber Optic Distributed Differential Displacement Sensor." Journal of Lightwave Technology 29, no. 18 (September 2011): 2847–52. http://dx.doi.org/10.1109/jlt.2011.2165527.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zhu, Hong Hu, Jian Hua Yin, Hua Fu Pei, Lin Zhang, and Wei Shen Zhu. "Fiber Optic Displacement Monitoring in Laboratory Physical Model Testing." Advanced Materials Research 143-144 (October 2010): 1081–85. http://dx.doi.org/10.4028/www.scientific.net/amr.143-144.1081.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
For physical models, conventional techniques have difficulties in monitoring internal displacements during laboratory testing. In this paper, based on fiber Bragg grating (FBG) sensing technology, a bar-type fiber optic displacement sensor is developed for small-scale models. When the model deforms due to loading or unloading, the embedded displacement sensor can capture the displacement profile along the bar length using the strain data from quasi-distributed FBGs. Laboratory calibration tests have showed that the displacements measured by the FBG sensing bar are in good agreement with those from conventional displacement transducers. For the physical models of a gravity dam and a cavern group, the FBG sensing bars were successfully installed in predefined holes, together with conventional gauges. During testing, the FBG sensing bars measured the displacement distributions within the models. The fiber optic monitoring results demonstrate the deformation characteristics of surrounding rock masses induced by overloading and underground excavation and indicate the overall stability conditions of these two geo-structures.
9

Yugay, V. V., P. Sh Madi, S. B. Ozhigina, D. A. Gorokhov, and A. D. Alkina. "Questions of application of fiber-optic sensors for monitoring crack growth during rock deformations." Journal of Physics: Conference Series 2140, no. 1 (December 1, 2021): 012037. http://dx.doi.org/10.1088/1742-6596/2140/1/012037.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract The paper considers ways to solve the problem of developing a system for monitoring displacement in quarries, which are the main main cause of the collapse of boards and berms in quarries. To ensure safety and constant monitoring during work at the quarry, there are chiseled fiber-optic sensors. The fiber-optic sensor is made on the basis of a single-mode optical fiber, which makes it possible to measure the displacements of the mountain range at distances of about 30 km with high accuracy. Laboratory sample a fiber-optic sensor in its work uses a method for monitoring additional losses that occur during mechanical action on an optical fiber. The fiber-optic sensor was made to show a fairly high linearity and accuracy during measurements and can be used to control the deformation of the array after appropriate refinement of its design. This article is aimed at creating means of controlling the process of deformation and displacement of a mountain massif. Ultimately, the results of the study will help prevent accidents associated with the collapse of the sides. Since the growth of cracks in the rocks of the bort mountain massif leads to its sudden collapse and creates a significant danger for personnel, it also causes the failure of mining equipment.
10

Меkhtiyev, А. D., E. G. Neshina, P. Sh Madi, and D. A. Gorokhov. "Automated Fiber-Optic System for Monitoring the Stability of the Pit Quarry Mass and Dumps." Occupational Safety in Industry, no. 4 (April 2021): 19–26. http://dx.doi.org/10.24000/0409-2961-2021-4-19-26.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This article ls with the issues related to the development of a system for monitoring the deformation and displacement of the rock mass leading to the collapse of the quarry sides. Monitoring system uses point-to-point fiber-optic sensors. Fiber-optic sensors and control cables of the communication line are made based on the single mode optical fibers, which allows to measure with high accuracy the deformations and displacements of the rock mass at a distance of 30-50 km. To create fiber-optic pressure sensors, an optical fiber of the ITU-T G. 652.D standard is used. Laboratory sample is developed concerning the point fiber-optic sensor made based on the two-arm Mach-Zender interferometer using a single mode optical fiber for monitoring strain (displacements) with a change in the sensitivity and a reduced influence of temperature interference leading to zero drift. The article presents a mathematical apparatus for calculating the intensity of radiation of a light wave passing through an optical fiber with and without mechanical stress. A laboratory sample of single mode optical fibers based on the Mach-Zender interferometer showed a fairly high linearity and accuracy in the measurement and can be used to control the strain of the mass after appropriate refinement of its design. Mathematical expressions are also given for determining the intensity of the light wave when the distance between the fixing points of a single mode optical fiber changes depending on the change in the external temperature. A diagram for measuring strain using a point fiber-optic strain sensor is developed. Hardware and software package is developed, which can be used to perform a number of settings of measuring channels. The work is aimed at solving the production problems of the Kenzhem quarry of AK Altynalmas JSC.

Дисертації з теми "Fiber optic displacement sensor":

1

Sakamoto, João Marcos Salvi. "Laser ultrasonics system with a fiber optic angular displacement sensor." Instituto Tecnológico de Aeronáutica, 2012. http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2146.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Laser ultrasonics is an all-optical non-destructive testing technique which employs ultrasonic waves as a means of ascertaining the internal part of an opaque material (for light). The difference from a conventional ultrasonics testing technique relies on the generation and detection of these waves which, in the laser ultrasonics technique, is performed by a laser pulse and an optical detector of ultrasound, respectively. This technique is employed in the aerospace and aeronautics industry for flaw detection or material characterization, since it is couplant free, non-contact and remote from the inspected object. The high cost and complexity of a commercial laser ultrasonics system, however, led to the development in this work, of an intensity-modulated fiber optic sensor to be employed as the optical detector of a laser ultrasonics system. This fiber optic sensor is capable to detect angular displacement in the range of microradians and presents high sensitivity, optical fiber compatibility, wide bandwidth and, furthermore, is simple to assembly and low cost. The fiber optic sensor comprises two optical fibers, a positive lens, a reflective surface, a laser, and a photodetector. A mathematical model was developed to determine and simulate the static characteristic curve of the sensor and to analyze the influence of geometrical parameters in its performance. Different sensor configurations were assembled and experimental static characteristic curves were acquired to validate the mathematical model. The normalized sensitivity, for the configurations tested, ranges from (0.25×Vmax) to (2.40×Vmax) mV/?rad and the linear range, from 194 to 1840 ?rad. Regarding an specific sensor configuration (the sensor 4/4) with reflective surface of 100% of reflectivity, the sensor presented an unnormalized sensitivity of 7.7 mV/?rad, an estimated resolution of approximately 1 ?rad and signal-to-noise ratio of 32 dB. The sensor was tested on the dynamic operation for sound and ultrasound detection and, finally as the optical detector of the complete laser ultrasonics system developed in this work. The sensor also proved to be suitable for time-of-flight measurements and nondestructive testing, being an alternative to the piezoelectric or the interferometric detectors.
2

Zhang, Kuiwei. "Surface roughness and displacement measurements using a fibre optic sensor and neural networks." Thesis, Brunel University, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.246145.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jason, Johan. "Fibre-Optic Displacement and Temperature Sensing Using Coupling Based Intensity Modulation and Polarisation Modulation Techniques." Doctoral thesis, Mittuniversitetet, Avdelningen för elektronikkonstruktion, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-18964.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Optical fibre sensors are employed in the measurements of a number of different physical properties or for event detection in safety and security systems. In those environments which suffer from electromagnetic disturbance, in harsh environments where electronics cannot survive and in applications in favour of distributed detection, fibre-optic sensors have found natural areas of use. In some cases they have replaced conventional electronic sensors due to better performance and long-term reliability, but in others they have had less success mainly due to the higher costs which are often involved in fibre-optic sensor systems. Intensity modulated fibre-optic sensors normally require only low-cost monitoring systems principally based on light emitting diodes and photodiodes. The sensor principle itself is very elemental when based on coupling between fibres, and coupling based intensity modulated sensors have been utilised over a long period of time, mainly within displacement and vibration sensing. For distributed sensing based on intensity modulation, optical time domain reflectometer (OTDR) systems with customised sensor cables have been used in the detection of heat, water leakage and hydrocarbon fluid spills. In this thesis, new concepts for intensity modulated fibre-optic sensors based on coupling between fibres are presented, analysed, simulated and experimentally verified. From a low-cost and standard component perspective, alternative designs are proposed and analysed using modulation function simulations and measurements, in order to find an improved performance. Further, the development and installation of a temperature sensor system for industrial process monitoring is presented, involving aspects with regards to design, calibration, multiplexing and fibre network installation. The OTDR is applied as an efficient technique for multiplexing several coupling based sensors, and sensor network installation with blown fibre in microducts is proposed as a flexible and cost-efficient alternative to traditional cabling. As a solution to alignment issues in coupling based sensors, a new displacement sensor configuration based on a fibre to a multicore fibre coupling and an image sensor readout system is proposed. With this concept a high-performance sensor setup with relaxed alignment demands and a large measurement range is realised. The sensor system performance is analysed theoretically with complete system simulations, and an experimental setup is made based on standard fibre and image acquisition components. Simulations of possible error contributions show that the experimental performance limitation is mainly related to differences between the modelled and the real coupled power distribution. An improved power model is suggested and evaluated experimentally, showing that the experimental performance can be improved down towards the theoretical limit of 1 μm. The potential of using filled side-hole fibres and polarisation analysis for point and distributed detection of temperature limits is investigated as a complement to existing fibre-optic heat detection systems. The behaviour and change in birefringence at the liquid/solid phase transition temperature for the filler substance is shown and experimentally determined for side-hole fibres filled with water solutions and a metal alloy, and the results are supported by simulations. A point sensor for on/off temperature detection based on this principle is suggested. Further the principles of distributed detection by measurements of the change in beat length are demonstrated using polarisation OTDR (POTDR) techniques. It is shown that high-resolution techniques are required for the fibres studied, and side-hole fibres designed with lower birefringence are suggested for future studies in relation to the distributed application.
Fiberoptiska sensorer används för mätning av ett antal olika fysikaliska parametrar eller för händelsedetektering i larm- och säkerhetssystem. I miljöer med elektromagnetiska störningar, i andra besvärliga miljöer där elektronik inte fungerar samt i tillämpningar där distribuerade sensorer är att föredra, har fiberoptiska lösningar funnit naturliga applikationer. I vissa fall har de ersatt konventionella elektroniska sensorer på grund av bättre prestanda och tillförlitlighet, medan de i andra sammanhang har haft mindre framgång huvudsakligen på grund av den i många fall högre kostnaden för fiberoptiska sensorsystem. Intensitetsmodulerade fiberoptiska sensorer kräver normalt endast billiga utläsningssystem huvudsakligen baserade på lysdioder och fotodioder. Principen för sådana sensorer baserade på koppling mellan fibrer är mycket enkel, och denna typ av sensorer har haft tillämpningar under en lång tid, främst inom mätning av positionsförändring och vibrationer. För distribuerade intensitetsmodulerade sensorer har system baserade på optisk tidsdomän-reflektometer (OTDR) och skräddarsydda sensorkablar funnit tillämpningar i detektion av värme/brand, vattenläckage och kolvätebaserade vätskor. I denna avhandling presenteras, simuleras, testas och utvärderas praktiskt några nya koncept för kopplingsbaserade intensitetsmodulerade fiberoptiska sensorer. Från ett lågkostnads- och standardkomponentperspektiv föreslås och analyseras alternativa lösningar för förbättrad prestanda. Utveckling och installation av en temperatursensor för en industriell tillämpning, innehållande aspekter på sensormultiplexering och nätverksbyggande, behandlas. OTDR-teknik används som en effektiv metod för multiplexering av flera kopplingsbaserade sensorer, och installation av sensornätverk genom användning av blåsfiberteknik och mikrodukter föreslås som ett flexibelt och kostnadseffektivt alternativ till traditionell kabelinstallation. Som en lösning på förekommande upplinjeringsproblem för kopplingsbaserade sensorer, föreslås en ny sensorkonfiguration baserad på koppling mellan en fiber och en multikärnefiber/fiberarray och med ett bildsensorsystem för detektering. Med detta koncept kan ett högpresterande, upplinjeringsfritt sensorsystem med ett stort mätområde åstadkommas. Sensorsystemets prestanda har analyserats teoretiskt med kompletta systemsimuleringar, och en experimentell uppställning baserad på standardfiber och en kamera av standardtyp har gjorts. Simuleringar av möjliga felbidrag visar att systemets experimentella prestanda främst begränsas av skillnader mellan den modellerade och den verkliga optiska effektfördelningen. En förbättrad modell för effektfördelningen föreslås och utvärderas experimentellt. Det visas att prestanda är möjlig att förbättra ner mot den teoretiska gräns på 1 μm som erhållits vid systemsimuleringar. Möjligheterna att använda fyllda hålfibrer och polarisationskänslig mätning för detektering av temperaturgränser studeras i syfte att komplettera befintliga fiberoptiska värmedetektorsystem. Förändringen i fiberns dubbelbrytning vid övergångstemperaturen mellan vätske- och fast fas för ämnet i hålen visas och bestäms experimentellt för hålfibrer fyllda med vattenlösningar respektive en metallegering, och resultaten understöds också av simuleringar. En punktsensor för temperaturdetektering baserad på denna princip föreslås. Vidare visas principerna för distribuerad detektering genom registrering av förändringen i dubbelbrytning med polarisations-OTDR (POTDR). Det visas att OTDR-teknik med hög spatial upplösning behövs för övervakning av de studerade fibrerna, och hålfibrer utformade med lägre dubbelbrytning föreslås för framtida studier av tillämpningen.
4

Arora, Neha. "Contribution to the concept of micro factory : design of a flexible electromagnetic conveyor system." Thesis, Compiègne, 2017. http://www.theses.fr/2017COMP2347.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
L’objectif de la thèse est de réaliser un système de convoyage flexible permettant de déplacer des micro-objets. Ce système pourra être amené à être intégré dans une micro-usine ce qui nécessite une forte reconfigurabilité et une faible consommation d’énergie. Ces deux critères ont donc été considérés lors de la conception du système de convoyage. Ce dernier est basé sur un actionneur planaire électromagnétique, développé au sein du laboratoire Roberval, et sur une surface intelligente composée de 5 × 5 cellules élémentaires permettant chacune de déplacer la partie mobile dans les deux directions du plan et des rotations autour de l'axe perpendiculaire au plan. Un modèle analytique de l’actionneur a été développé afin de calculer les efforts électromagnétiques ainsi que le déplacement de la partie mobile. Ce modèle a été utilisé lors de la phase de conception du système de convoyage. Un prototype expérimental a ensuite été fabriqué et testé ce qui a permis de valider le principe de fonctionnement proposé. Des tests expérimentaux ont montré la possibilité de réaliser des déplacements de grande étendue dans les deux directions du plan. De multiples tests expérimentaux (pilotage en boucle ouverte, caractérisation des performances telles que rectitude de déplacement, répétabilité de positionnement, charge déplaçable, …) a été réalisée afin de qualifier les performances du système de convoyage. Les points sur la réalisation : - Une modélisation statique sous RADIA a été développée afin de concevoir la surface intelligente notamment la zone de transition entre deux cellules voisines. Une modélisation dynamique réalisée sous MATLAB a permis de simuler le comportement d’un moteur en boucle ouverte et en boucle fermée. - Un prototype de surface intelligente, composé d’un circuit imprimé multicouches (4 couches) de dimensions 130 mm x 130 mm, a été conçu sous EAGLE software. L’influence de la distance entre les deux premières couches a été étudiée à l’aide des modèles développés afin d'assurer un déplacement uniforme dans les deux directions. - Un test expérimental avec LABVIEW interface d'une cellule élémentaire de la surface intelligente avec une partie mobile composée de deux moteurs magnétiques orthogonaux a été réalisé et a permis de valider le fonctionnement du système de convoyage dans les deux directions du plan. - Une autre série de tests avec LABVIEW interface a été réalisée afin de valider expérimentalement le déplacement de la partie mobile avec la surface intelligente au niveau des zones de transition entre les cellules élémentaires. Ces tests expérimentaux ont montré des déplacements de grande étendue dans les deux directions du plan et de rotation autour de l'axe perpendiculaire au plan. Des déplacements de grande étendue et des rotations de la partie mobile ont été mesurés à l’aide d’une méthode de traitement d'image réalisée sous MATLAB. - Parallèlement, on a étudié un capteur à déplacement optique à haute résolution qui peut être intégré dans le convoyeur. Un algorithme robuste pour le traitement du signal de capteur à fibres optiques à haute résolution pour mesurer de déplacement est développé. Dans cet algorithme, la position optimale de la partie mobile est déterminée pour obtenir un basculement sans arrêt entre les sondes et l'algorithme est implémenté sous MATLAB et validée par la mise en œuvre des signaux expérimentaux. Ces travaux de thèse ont été publiés dans une revue internationale (Computers in Industry (COMIND)) et présentés dans des congrès internationaux (IEEE Sensors, REM Mechatronics, AIM, IWMF) pendant les années 2011 à 2016
The aim of the thesis is to provide a flexible conveyor system for moving micro-objects. The system may need to be integrated into a micro-factory which requires high reconfigurability and low power consumption. These two criteria have been considered in the design of the conveyor system. The conveyor is based on a planar electromagnetic actuator developed in the Laboratoire Roberval of the UTC, and on smart surface composed of 5 x 5 unit cells; each ceii moves th movable part in the two directions of the plane. An analytical model of the actuator has been developed in order to calculate the electromagnetic forces and the displacement of the mobile part. This modei has been used during the design phase of the conveying system. An experimental prototype is then manufactured and tested which has validated the proposed principle of operation. Experimental tests have shown the ability to perform wide area displacement in both directions of the plane. Numerous experimental tests (control in open loop and closed loop performance characterization as straightness of movement, position repeatability, coupled- decoupled analysis...) have been done to qualify the performance of the conveyor system. Experiments for rotations about the axis perpendicular to the olane have also been performed successfully. Work synthesis: - Static modeling under RADIA was developed in order to design the conveyor surface especially for the transitio zone between two neighboring cells. A dynamic modeling under MATLAB allowed to simulate the behavior of single axis motor in open loop and closed loop control. - A conveyor surface prototype, consisting of a multilayer printed circuit board (4 layers) of dimensions 130 mm x 130 mm, was designed under EAGLE software. The influence of the distance between the first two layers was studied using the developed models to ensure uniform displacement in both the directions. - The experimental tests (with LABVIEW interface) of an elementary cell of the intelligent surface with a moving part composed of two orthogonal magnetic motors has been carried out that allowed to validate the operation of the conveying system in both directions of the plane. - Another series of tests with LABVIEW interface were carried out in order to validate experimentally the displacement of the mobile part with the smart surface at the transition zones between the elementary cells. - These experimental tests showed displacements of great extent in the two directions of the plane and of rotation about the axis perpendicular to the plane. - Long displacements and rotations of the moving part were measured using image processing algorithm developed in MATLAB. - At the same time, a high resolution fiber optic displacement sensor was studied that can be integrated into the conveyor surface locally for the precise positioning. A robust signal processing algorithm for high resolution displacement measurement was developed. In this algorithm, - The optimum position of the movable part is determined in order to obtain a continuous switching betwee the two fiber optic probes ; - The usable parts of the signals obtained from two probes were then filtered to measure the displacement using interpolation method ; The algorithm is implemented under MATLAB and validated by the implementation of the experimental signals. The work have been published in an international journal (Computers in Industry (COMIND)) and presented at international congresses (IEEE Sensors, REM Mechatronics, AIM, IWMF) during the years 2011 to 2016
5

Beadle, Brad Michael. "Fiber optic sensor for ultrasound." Diss., Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/17869.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Beadle, Brad Michael. "Fiber optic sensor for ultrasound." Thesis, Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/19173.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Maier, Eric William. "Buried fiber optic intrusion sensor." Thesis, Texas A&M University, 2004. http://hdl.handle.net/1969.1/425.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A distributed fiber optic intrusion sensor capable of detecting intruders from the pressure of their weight on the earth's surface was investigated in the laboratory and in field tests. The presence of an intruder above or in proximity to the buried sensor induces a phase shift in light propagating along the fiber which allows for the detection and localization of intrusions. Through the use of an ultra-stable erbium-doped fiber laser and phase sensitive optical time domain reflectometry, disturbances were monitored in long (several km) lengths of optical fiber. Narrow linewidth and low frequency drift in the laser were achieved through a combination of optical feedback and insulation of the laser cavity against environmental effects. The frequency drift of the laser, characterized using an all-fiber Mach Zehnder interferometer, was found to be less than 1 MHz/min, as required for operation of the intrusion detection system. Intrusions were simulated in a laboratory setting using a piezoelectric transducer to produce a controllable optical phase shift at the 2 km point of a 12 km path length. Interrogation of the distributed sensor was accomplished by repetitively gating light pulses from the stable laser into the sensing fiber. By monitoring the Rayleigh backscattered light with a photodetector and comparing traces with and without an induced phase shift, the phase disturbances were detected and located. Once the feasibility of such a sensor was proven in the laboratory, the experimental set up was transferred to Texas A&M's Riverside Campus. At the test site, approximately 40 meters of fiber optic cable were buried in a triangle perimeter and then spliced into the 12 km path length which was housed inside the test facility. Field tests were conducted producing results comparable to those found in the laboratory. Intrusions over this buried fiber were detectable on the φ-OTDR trace and could be localized to the intrusion point. This type of sensor has the potential benefits of heightened sensitivity, covertness, and greatly reduced cost over the conventional seismic, acoustic, infrared, magnetic, and fiber optic sensors for monitoring long (multi-km) perimeters.
8

Goyal, Sandeep. "Fiber optic current sensor network." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/mq24716.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Chen, Qiao. "ESA based fiber optical humidity sensor." Thesis, Virginia Tech, 2002. http://hdl.handle.net/10919/10134.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Several techniques for measuring humidity are presented. The goal of the study is to use the electrostatic self-assembled monolayer synthesis process to fabricate a Fabry-Parot Cavity based optical fiber humidity sensor. The sensing scheme bases on the refractive index change with relative humidity of the film applied to the end of optical fiber. That is, the change in reflected optical power indicates certain humidity. To achieve this, some chemicals induce on specific coating materials were applied at the end of optical fiber. In this thesis, experimental results are given to prove that the humidity sensor has high sensitive and fast response time. Furthermore, we investigate the potential for the use of human breathing monitoring and air flow rate detection. Results from preliminary tests of each are given.
Master of Science
10

Bangert, Adam. "Fiber optic sensor prototype for breast cancer imaging." Connect to resource, 2006. http://hdl.handle.net/1811/6455.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (Honors)--Ohio State University, 2006.
Title from first page of PDF file. Document formatted into pages: contains 33 p.; also includes graphics. Includes bibliographical references (p. 20). Available online via Ohio State University's Knowledge Bank.

Книги з теми "Fiber optic displacement sensor":

1

Ross, Cameron D. Distributed single-mode microbend fiber-optic sensor. Sudbury, Ont: Laurentian University Press, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chik, Danny Ka Hon. Application of long gauge fiber optic measurement system: Long gauge fiber optic sensor. [Downsview, Ont.]: University of Toronto, Institute for Aerospace Studies, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Dunphy, J. R. Development of a fiber optic sensor for turbine disk diagnostics. New York: AIAA, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hogg, William Daylesford. Strain and temperature measurements using a localised polarimetric fibre optic sensor. [Downsview, Ont.]: University of Toronto, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Pacific Northwest Fiber Optic Sensor Workshop (1995 Troutdale, Or.). Pacific Northwest Fiber Optic Sensor Workshop: 3-4 May 1995, Troutdale, Oregon. Edited by Udd Eric, Society of Photo-optical Instrumentation Engineers., and Blue Road Research. Bellingham, Wash: The Society, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Pacific Northwest Fiber Optic Sensor Workshop (2nd 1996 Troutdale, Or.). Second Pacific Northwest Fiber Optic Sensor Workshop, 8-9 May 1996, Troutdale, Oregon. Edited by Udd Eric, Blue Road Research, and Society of Photo-optical Instrumentation Engineers. Bellingham, Wash: The Society, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Pacific Northwest Fiber Optic Sensor Workshop (4th 1998 Troutdale, Or.). Fourth Pacific Northwest Fiber Optic Sensor Workshop: 6-7 May 1998, Troutdale, Oregon. Edited by Udd Eric, Jung Chuck C, Blue Road Research, and Society of Photo-optical Instrumentation Engineers. Bellingham, Wash., USA: SPIE, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Pacific, Northwest Fiber Optic Sensor Workshop (3rd 1997 Troutdale Or ). Third Pacific Northwest Fiber Optic Sensor Workshop: 6-7 May 1997, Troutdale, Oregon. Bellingham, Wash., USA: SPIE, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Pacific Northwest Fiber Optic Sensor Workshop (6th 2003 Troutdale, Or.). Sixth Pacific Northwest Fiber Optic Sensor Workshop: 14-15 May 2003, Troutdale, Oregon, USA. Edited by Udd Eric, Kreger Stephen T, Bush Jeff 1977-, Blue Road Research, and Society of Photo-optical Instrumentation Engineers. Bellingham, Wash: SPIE, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Pacific Northwest Fiber Optic Sensor Workshop. Sixth Pacific Northwest Fiber Optic Sensor Workshop: 14-15 May 2003, Troutdale, Oregon, USA. Bellingham, WA: SPIE, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Fiber optic displacement sensor":

1

Grahn, Rick, Hussain Karimi, Kyle Wilson, Erik Moro, and Anthony Puckett. "Performance Comparison of Fiber Optic Tips in Interferometric Displacement Measurements." In Sensors, Instrumentation and Special Topics, Volume 6, 227–35. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9507-0_22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ecke, W., K. H. Jäckel, P. Pfeifer, J. Schauer, and R. Willsch. "Fibre Optic Remote Displacement Sensor for Seismic Events at High Temperature." In Applications of Photonic Technology 2, 771–76. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4757-9250-8_116.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Weik, Martin H. "fiber optic sensor." In Computer Science and Communications Dictionary, 595. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_7011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Blake, J. "Fiber optic gyroscopes." In Optical Fiber Sensor Technology, 303–28. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5787-6_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Weik, Martin H. "Sagnac fiber optic sensor." In Computer Science and Communications Dictionary, 1511. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_16566.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Culshaw, Brian. "Fiber-Optic Sensor Networks." In Sensors, 515–28. Weinheim, Germany: Wiley-VCH Verlag GmbH, 2008. http://dx.doi.org/10.1002/9783527620173.ch20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Magill, J. V. "Integrated optic sensors." In Optical Fiber Sensor Technology, 113–32. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-017-2484-5_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hartog, A. H. "Distributed fiber-optic sensors." In Optical Fiber Sensor Technology, 347–82. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-1210-9_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Berthold, John W. "Microbend fiber optic sensors." In Optical Fiber Sensor Technology, 225–40. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4757-6077-4_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Grattan, K. T. V., and Z. Y. Zhang. "Fiber optic luminescence thermometry." In Optical Fiber Sensor Technology, 133–203. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-017-2484-5_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Fiber optic displacement sensor":

1

Davis, Pepe G., Jeff Bush, and Gregory S. Maurer. "Fiber optic displacement sensor." In Pacific Northwest Fiber Optic Sensor Workshop, edited by Chuck C. Jung and Eric Udd. SPIE, 1998. http://dx.doi.org/10.1117/12.323427.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Andriesh, Andrei M., Ion P. Culeac, V. A. Binchevici, Vladimir G. Abaschin, and V. N. Schitsco. "Fiber optic displacement sensor." In Optics Quebec, edited by Roger A. Lessard. SPIE, 1994. http://dx.doi.org/10.1117/12.166336.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Fisher, Karl A., and Jacek Jarzynski. "Fiber optic multimode displacement sensor." In Acoustic particle velocity sensors: Design, performance, and applications. AIP, 1996. http://dx.doi.org/10.1063/1.50340.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Spillman, Jr., W. B., and P. L. Fuhr. "Fiber Optic Rotary Displacement Sensor with Wavelength Encoding." In Optical Fiber Sensors. Washington, D.C.: OSA, 1988. http://dx.doi.org/10.1364/ofs.1988.thcc14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Duplain, G., C. Belleville, S. Bussière, and P. A. Bélanger. "Absolute Fiber-Optic Linear Position and Displacement Sensor." In Optical Fiber Sensors. Washington, D.C.: OSA, 1997. http://dx.doi.org/10.1364/ofs.1997.otud5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Howe, R. D., and G. Kychakoff. "Reflection based fiber-optic displacement sensor." In ICALEO® ‘86: The Changing Frontiers of Optical Techniques for Industrial Measurement and Control. Laser Institute of America, 1986. http://dx.doi.org/10.2351/1.5057825.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Shribak, Michael I., Victor L. Kolpashchikov, and Oleg G. Martynenko. "Fiber optic sensor of linear displacement." In Photonics China '96, edited by Kim D. Bennett, Byoung Yoon Kim, and Yanbiao Liao. SPIE, 1996. http://dx.doi.org/10.1117/12.252151.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Spillman, Jr., W. B., P. L. Fuhr, and P. J. Kajenski. "Self-Referencing Fiber Optic Rotary Displacement Sensor." In O-E/Fiber LASE '88, edited by Ramon P. DePaula and Eric Udd. SPIE, 1989. http://dx.doi.org/10.1117/12.948873.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Spillman, Jr., William B., Robert E. Rudd III, Frederick G. Hoff, Douglas R. Patriquin, and Jeffrey R. Lord. "Wavelength-encoded fiber optic angular displacement sensor." In Microlithography '91, San Jose,CA, edited by Ramon P. DePaula and Eric Udd. SPIE, 1991. http://dx.doi.org/10.1117/12.24744.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Nilsson, Bruno, Dan Tilert, Attila Temun, Torgny Carlsson, and Lars Mattsson. "Fast low-cost fiber-optic displacement sensor." In Bruges, Belgium - Deadline Past. SPIE, 2005. http://dx.doi.org/10.1117/12.623631.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Fiber optic displacement sensor":

1

Green, R. E. L., and A. I. Poutiatine. Fiber-optic displacement sensors on the Hunters Trophy UGT impulse gauge experiments. Office of Scientific and Technical Information (OSTI), March 1995. http://dx.doi.org/10.2172/28389.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Moro, Erik A. Modeling and Validation of Performance Limitations for the Optimal Design of Interferometric and Intensity-Modulated Fiber Optic Displacement Sensors. Office of Scientific and Technical Information (OSTI), July 2012. http://dx.doi.org/10.2172/1048657.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Rabold, D. Fiber optic temperature sensor. Office of Scientific and Technical Information (OSTI), December 1995. http://dx.doi.org/10.2172/145843.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Butler, M. A., R. Sanchez, and G. R. Dulleck. Fiber optic hydrogen sensor. Office of Scientific and Technical Information (OSTI), May 1996. http://dx.doi.org/10.2172/251330.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Weiss, J. Fiber-optic shock position sensor. Office of Scientific and Technical Information (OSTI), March 1993. http://dx.doi.org/10.2172/6721455.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ziegler, K. E. Fiber-Optic Laser Raman Spectroscopy Sensor. Office of Scientific and Technical Information (OSTI), September 2003. http://dx.doi.org/10.2172/815181.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Menking, Darrel E., Jonathan M. Heitz, Roy G. Thompson, and Deborah G. Thompson. Antibody-Based Fiber Optic Evanescent Wave Sensor. Fort Belvoir, VA: Defense Technical Information Center, September 1995. http://dx.doi.org/10.21236/ada299937.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Tung, D., L. Bertram, R. Hillaire, S. Anderson, S. Leonard, and S. Marburger. Fiber optic sensor: Feedback control design and implementation. Office of Scientific and Technical Information (OSTI), July 1997. http://dx.doi.org/10.2172/554748.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Day, G. W. Fiber optic and sensor technology support. Project progress report. Office of Scientific and Technical Information (OSTI), October 1988. http://dx.doi.org/10.2172/71361.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Zhang, Yuke, W. R. Seitz, Donald C. Sundberg, and Clarence L. Grant. Preliminary Development of a Fiber Optic Sensor for TNT. Fort Belvoir, VA: Defense Technical Information Center, March 1988. http://dx.doi.org/10.21236/ada195869.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії