Добірка наукової літератури з теми "Infections à Burkholderia cepacia"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Infections à Burkholderia cepacia".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Infections à Burkholderia cepacia":

1

Shaban, Ramon Z., Cristina Sotomayor-Castillo, Shizar Nahidi, Cecilia Li, Deborough Macbeth, Brett G. Mitchell, and Philip L. Russo. "Global burden, point sources, and outbreak management of healthcare-associated Burkholderia cepacia infections: An integrative review." Infection Control & Hospital Epidemiology 41, no. 7 (May 22, 2020): 777–83. http://dx.doi.org/10.1017/ice.2020.184.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractObjective:To examine the global burden, associated point sources, and successful prevention and control measures for documented outbreaks of Burkholderia cepacia healthcare-associated infections (HAIs).Design:Integrative review.Methods:A review of all outbreaks of Burkholderia cepacia HAIs published in the peer-reviewed literature between January 1970 and October 2019 was conducted to identify the global burden, associated point sources, and successful prevention and control measures using the Guidelines for Outbreak Reports and Intervention Studies of Nosocomial Infections (ORION).Results:In total, we reviewed 125 documented outbreaks of Burkholderia cepacia–related HAIs worldwide. The reported B. cepacia HAIs for this period involved 3,287 patients. The point sources were identified in most outbreaks of B. cepacia HAIs (n = 93; 74.4%); they included medication vials, disinfectants, and antiseptics. Moreover, 95 of the outbreak reports (76%) described effective prevention and control measures, but only 33 reports indicated the use of a combination of environment-, patient- and staff-related measures. None of the outbreak reports used the ORION guidelines.Conclusions:Outbreaks of Burkholderia cepacia HAIs are an ongoing challenge. They are often associated with immunocompromised patients who acquire the infection from exposure to contaminated medications, products, and equipment. These outbreaks are not infrequent, and a range of infection prevention and control measures have been effective in arresting spread. The use of ORION guidelines for outbreak reporting would improve the quality of information and data to generate evidence for translation into practice.
2

Gleeson, Sarah, Eoin Mulroy, Elizabeth Bryce, Sally Fox, Susan L. Taylor, and Hari Talreja. "Burkholderia cepacia: An Outbreak in the Peritoneal Dialysis Unit." Peritoneal Dialysis International: Journal of the International Society for Peritoneal Dialysis 39, no. 1 (January 2019): 92–95. http://dx.doi.org/10.3747/pdi.2018.00095.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Burkholderia cepacia is a ubiquitous, opportunistic, environmental gram-negative bacillus which most commonly affects cystic fibrosis and immunocompromised patients. Rarely, it can cause peritoneal dialysis (PD) exit-site infection (ESI). Information relating to predisposing factors, clinical course, and treatment options for B. cepacia ESIs is limited. Although reports of B. cepacia healthcare-associated infections exist, outbreaks in PD units have not previously been reported. A recent outbreak of B. cepacia ESI in our PD unit provided a unique opportunity to study B. cepacia ESIs and to outline an approach to investigating such an outbreak. After unexpectedly identifying B. cepacia as the cause of PD catheter ESIs in 3 patients over an 11-week period, we began systematically screening our PD population for B. cepacia exit-site colonization. A further 6 patients were found to be affected, 3 with asymptomatic colonization and 3 with symptomatic B. cepacia ESI. Four of the 6 developed tunnel infections requiring multiple courses of antibiotic treatment, and 3 patients required catheter removal; 2 patients with symptomatic ESIs without tunnel involvement responded to oral and topical antibiotics. Further investigation implicated 4% chlorhexidine aqueous bodywash used by all patients as the probable source of the outbreak. This is the first reported outbreak of B. cepacia ESIs. We noted an association between diabetes mellitus and refractory/more extensive infection. Our experience suggests that isolated ESIs can be treated successfully with oral antibiotics whereas tunnel infections generally require catheter removal.
3

Burns, Jane L., and Lisa Saiman. "BURKHOLDERIA CEPACIA INFECTIONS IN CYSTIC FIBROSIS." Pediatric Infectious Disease Journal 18, no. 2 (February 1999): 155–56. http://dx.doi.org/10.1097/00006454-199902000-00015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Vonberg, Ralf-Peter, Susanne Häußler, Peter Vandamme, and Ivo Steinmetz. "Identification of Burkholderia cepacia complex pathogens by rapid-cycle PCR with fluorescent hybridization probes." Journal of Medical Microbiology 55, no. 6 (June 1, 2006): 721–27. http://dx.doi.org/10.1099/jmm.0.46457-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Members of the Burkholderia cepacia complex are important bacterial pathogens in cystic fibrosis (CF) patients. The B. cepacia complex currently consists of nine genetic subgroups (genomovars) of different epidemiological relevance and possibly of different pathogenic potential in humans. In this study, a new approach was developed for the rapid identification of B. cepacia genomovar I, Burkholderia multivorans (genomovar II), Burkholderia cenocepacia (lineage III-A and III-B), Burkholderia stabilis (genomovar IV) and Burkholderia vietnamiensis (genomovar V), which cause the large majority of infections in CF patients. The method was based on the detection of differences in the recA gene sequence by using rapid-cycle PCR and genomovar-specific fluorescence resonance energy transfer (FRET) probes. The genomovar status of all 39 B. cepacia complex strains tested (genomovars I–V) was identified by melting-curve analysis. Each FRET probe produced a specific fluorescence signal only with the respective genomovar, and not with other B. cepacia complex strains and Burkholderia spp. The identification system was easy to handle and revealed B. cepacia complex genomovar I–V status from culture isolates within about 1 h.
5

Bernier, Steve P., Laura Silo-Suh, Donald E. Woods, Dennis E. Ohman, and Pamela A. Sokol. "Comparative Analysis of Plant and Animal Models for Characterization of Burkholderia cepacia Virulence." Infection and Immunity 71, no. 9 (September 2003): 5306–13. http://dx.doi.org/10.1128/iai.71.9.5306-5313.2003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
ABSTRACT A simple alfalfa model was developed as an alternative infection model for virulence studies of the Burkholderia cepacia complex. Symptoms of disease were observed in wounded alfalfa seedlings within 7 days following inoculation of 101 to 105 CFU of most strains of the B. cepacia complex. Strains from seven genomovars of the B. cepacia complex were tested for virulence in the alfalfa model, and the degree of virulence was generally similar in strains belonging to the same genomovar. Strains of Burkholderia multivorans and some strains of Burkholderia stabilis did not cause symptoms of disease in alfalfa seedlings. Representative strains were also tested for virulence using the rat agar bead model. Most of the strains tested were able to establish chronic lung infections; B. stabilis strains were the exception. Most of the strains that were virulent in the alfalfa infection model were also virulent in the lung infection model. The B. cepacia genomovar III mutants K56pvdA::tp and K56-H15 were significantly less virulent in the alfalfa infection model than their parent strain. Therefore, this alfalfa infection model may be a useful tool for assessing virulence of strains of the B. cepacia complex and identifying new virulence-associated genes.
6

RAJASEKHARAN, SATISH KUMAR, and SAMIRAJ RAMESH. "Cellulase Inhibits Burkholderia cepacia Biofilms on Diverse Prosthetic Materials." Polish Journal of Microbiology 62, no. 3 (2013): 327–30. http://dx.doi.org/10.33073/pjm-2013-044.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Burkholderia cepacia is an opportunistic pathogen causing infections in patients with cystic fibrosis. Patients with implanted devices are prone to B. cepacia infections due to its ability to grow as biofilms. Knowing the importance of polysaccharides in a biofilm, enzymes that degrade them were targeted as a possible candidate for antibiofilm agents. In this study, the antibiofilm potential of cellulase against B. cepacia biofilms formed on various prosthetic materials was tested. Cellulase exhibited significant antibiofilm activity against B. cepacia without having much action on its growth, thus ruling out the chance of selection pressure and subsequent development resistance.
7

Lewenza, Shawn, Michelle B. Visser, and Pamela A. Sokol. "Interspecies communication betweenBurkholderia cepaciaandPseudomonas aeruginosa." Canadian Journal of Microbiology 48, no. 8 (August 1, 2002): 707–16. http://dx.doi.org/10.1139/w02-068.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Burkholderia cepacia and Pseudomonas aeruginosa are opportunistic pathogens that commonly cause pulmonary infections in cystic fibrosis patients and occasionally co-infect patients' lungs. Both organisms possess quorum-sensing systems dependent on N-acyl homoserine lactone (N-acyl-HSL). Cross-feeding assays demonstrated that P. aeruginosa and B. cepacia were able to utilize heterologous N-acyl-HSL signaling molecules. The ability of quorum-sensing genes from one species to complement the respective quorum-sensing mutations in the heterologous species was also examined. These studies suggest that B. cepacia CepR can use N-acyl-HSLs synthesized by RhlI and LasI and that P. aeruginosa LasR and RhlR can use N-acyl-HSLs synthesized by CepI. It is possible that a mixed bacterial population of B. cepacia and P. aeruginosa can coordinately regulate some of their virulence factors and influence the progression of lung disease due to infection with these organisms.Key words: quorum sensing, Burkholderia cepacia, Pseudomonas aeruginosa, cystic fibrosis.
8

AuCoin, David P., Reva B. Crump, Peter Thorkildson, Dana E. Nuti, John J. LiPuma, and Thomas R. Kozel. "Identification of Burkholderia cepacia complex bacteria with a lipopolysaccharide-specific monoclonal antibody." Journal of Medical Microbiology 59, no. 1 (January 1, 2010): 41–47. http://dx.doi.org/10.1099/jmm.0.012500-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The genus Burkholderia includes many bacteria that cause serious human infections. As is the case with other Gram-negative bacteria, Burkholderia species produce LPS, which is an abundant component of the bacterial cell surface. Burkholderia cepacia complex (Bcc) bacteria (which include at least 17 separate species) produce LPS structures that are quite different. In an attempt to determine the degree of LPS epitope variation among Bcc species, a mAb was produced, designated 5D8, specific for the LPS of B. cepacia. Western blot analysis determined that mAb 5D8 was able to produce the classic ‘ladder pattern’ when used to probe B. cepacia and Burkholderia anthina lysates, although 5D8 did not produce this pattern with the other seven Bcc species tested. mAb 5D8 reacted with varying intensity to most but not all of the additional B. cepacia and B. anthina strains tested. Therefore, there seems to be significant epitope variation among Bcc LPS both between and within species. Additionally, mAb 5D8 reacted with a proteinase-K-sensitive 22 kDa antigen in all Bcc strains and also in a strain of Burkholderia pseudomallei.
9

Meza-Radilla, Georgina, Violeta Larios-Serrato, Rigoberto Hernández-Castro, J. Antonio Ibarra, and Paulina Estrada-de los Santos. "Burkholderia species in human infections in Mexico: Identification of B. cepacia, B. contaminans, B. multivorans, B. vietnamiensis,B. pseudomallei and a new Burkholderia species." PLOS Neglected Tropical Diseases 15, no. 6 (June 29, 2021): e0009541. http://dx.doi.org/10.1371/journal.pntd.0009541.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Background Burkholderia sensu stricto is comprised mainly of opportunistic pathogens. This group is widely distributed in the environment but is especially important in clinical settings. In Mexico, few species have been correctly identified among patients, most often B. cepacia is described. Methodology/Principal findings In this study, approximately 90 strains identified as B. cepacia with the VITEK2 system were isolated from two medical centers in Mexico City and analyzed by MLSA, BOX-PCR and genome analysis. The initial identification of B. cepacia was confirmed for many strains, but B. contaminans, B. multivorans and B. vietnamiensis were also identified among clinical strains for the first time in hospitals in Mexico. Additionally, the presence of B. pseudomallei was confirmed, and a novel species within the B. cepacia complex was documented. Several strains misidentified as B. cepacia actually belong to the genera Pseudomonas, Stenotrophomonas and Providencia. Conclusions/Significance The presence of different Burkholderia species in Mexico was confirmed. Correct identification of Burkholderia species is important to provide accurate treatment for immunosuppressed patients.
10

Bedir Demirdag, Tugba, Aslinur Ozkaya Parlakay, Ismail Selcuk Aygar, Belgin Gulhan, and Saliha Kanik Yuksek. "Major Aspects of Burkholderia gladioli and Burkholderia cepacia Infections in Children." Pediatric Infectious Disease Journal 39, no. 5 (May 2020): 374–78. http://dx.doi.org/10.1097/inf.0000000000002587.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Infections à Burkholderia cepacia":

1

Lameignère, Émilie. "Etudes structurales et fonctionnelles des lectines solubles de Burkholderia cenocepacia." Université Joseph Fourier (Grenoble ; 1971-2015), 2009. http://www.theses.fr/2009GRE10024.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La colonisation des poumons par des germes comme Pseudomonas aeruginosa et Burkholderia cenocepacia représente la première cause de maladie et de mortalité chez les patients atteints de la mucoviscidose. Quatre gènes de séquence apparentée à celui codant pour la lectine soluble PA-IIL (LecB) de P. Aeruginosa ont été identifies dans le génome de B. Cenocepacia. Ces lectines pourraient être impliquées dans la reconnaissance des cellules epitheliales de l'hOte au stade précoce de l'infection, ou encore dans la formation du biofilm responsable de la résistance aux antibiotiques. Les travaux développés dans cette thèse portent sur l'étude structurale et fonctionnelle de deux de ces lectines : Bc1A et Bc1B, ainsi que sur la localisation et la fonction des protéines chez la bactérie. L'utilisation de glycan arrays associée à la microcalorimétrie de titration ont permis de déterminer la spécificité des lectines et leur affinity pour les meilleurs ligands. Les études de localisation ont montré ces lectines cytoplasmiques sont aussi détectées à la surface de la membrane externe. Enfin, l'obtention de cristaux de lectine complexée à son ligand permet de mieux comprendre l'interaction l'échelle moléculaire
Opportunistic infection by pathogens such as Pseudomonas aeruginosa and Burkholderia cenocepacia is the first cause of morbidity and mortality in cystic fibrosis patients. The opportunistic pathogen Burkholderia cenocepacia contains three soluble carbohydratebinding proteins, related to the fucose-binding lectin PA-IIL from Pseudomanas aeruginosa. These lectins could play a role in early stage of infection through specific binding to epithelial cells of hosts. They could also be involved in the building of biofilm that is responsible for resistance to antibiotics. The thesis is focused on structure-function studies of two B. Cenocepacia lectins, Bc1A and Bc1B with the aim to correlate the data to the localization and function in the bacteria. Glycan array data associated with titration microcalorimetry allowed to determine the specificity of the lectins and the affinity towards the best ligands. Localization studies demonstrate the presence of the lectins in the bacteria cytoplasm but also on the outer membrane. Finally, crystal structures of lectin complexed with carbohydrate give the molecular basis of the interaction
2

Mesureur, Jennifer. "Réponse de l'hôte et virulence bactérienne durant une infection aiguë ou persistante causée par le complexe Burkholderia cepacia chez l'embryon de poisson-zèbre (Danio rerio)." Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTT024.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les bactéries appartenant au complexe Burkholderia cepacia (Bcc) provoquent des infections sévères chez les personnes atteintes de mucoviscidose. L'infection peut varier d'une forme asymptomatique à une forme plus aiguë pouvant entraîner une pneumonie nécrosante et une septicémie, connue sous le nom de syndrome cepacia. Afin d'étudier les infections causées par le Bcc, nous avons développé un nouveau modèle in vivo, l'embryon de poisson zèbre. Nous avons montré que B. cenocepacia K56-2 pouvait se répliquer dans les macrophages et causer une infection aiguë mortelle pour les embryons. En revanche, B. stabilis LMG14294 induit une infection persistante chez les embryons. Dans cette étude, nous avons montré que les macrophages jouaient un rôle-clé dans la multiplication de K56-2 et dans l'induction d'une réponse inflammatoire MyD88-dépendante, caractérisée par la surexpression des gènes codant pour Cxcl8 (ou IL-8) et l'IL-1b. En l'absence de macrophages, les bactéries sont incapables de se multiplier durant les premières 24h de l'infection, ce qui donne un avantage pour la survie des embryons. L'absence de MyD88 induit aussi l'augmentation de la survie des embryons infectés par K56-2. Mais de manière paradoxale, les bactéries se multiplient mieux chez les embryons myd88-/- mutants que chez les embryons sauvages. Ceci suggère que ce n'est pas le nombre de bactéries qui est important pour l'infection, mais que c'est la réponse inflammatoire excessive causée par cette infection qui entraîne la mort des embryons. Afin d'avoir une vision globale des changements d'expression des gènes de l'hôte durant l'infection, nous avons effectué une expérience de RNAseq. Comme attendu, l'infection aiguë se caractérise par une importante modulation du transcriptome de l'hôte qui augmente avec le temps. A l'opposé, l'infection persistante n'induit que très peu de changements. La réponse immunitaire innée, et en particulier la voie des TLR, ainsi que l'apoptose sont très fortement activées durant une infection aiguë. Pour sa part, B. stabilis module essentiellement les gènes codant pour le système du complément.Le rôle critique des macrophages lors d'une infection par Bcc chez les poissons zèbre est en accord avec les récentes observations cliniques. Ceci suggère que le stade intracellulaire de B. cenocepacia et la réponse inflammatoire qui s'ensuit peuvent être des cibles pour le développement de nouvelles thérapies permettant de lutter contre cette infection
Bacteria belonging to the Burkholderia cepacia complex (Bcc) can cause chronic infection with periods of acute exacerbation and sometimes fatal necrotizing pneumonia (“cepacia syndrome”) in individuals with cystic fibrosis (CF), and are associated with poor prognosis. Here, we exploited the exciting possibilities for in vivo non-invasive imaging of Bcc infection in transparent zebrafish embryos, with an innate immune system with remarkable similarity to that of humans, and numerous genetic and genomic tools to study the role of host phagocytes and the innate immune response in the pro-inflammatory character of the infection.We show that macrophages play a critical role in intracellular multiplication of B. cenocepacia K56-2 and induction of a MyD88-dependent fatal inflammatory response, characterised by high levels of cxcl8 and il1b expression. Surprisingly, in sharp contrast to the situation found for infections with other pathogens including Mycobacterium marinum and Staphylococcus aureus, in the absence of macrophages, K56-2 survived but was unable to replicate in the first 24 h, which resulted in a significant pro-survival advantage to the host compared to wild type embryos that died within 2 to 3 days. The Toll-like receptor (TLR) pathway is a major arm of the cell-mediated innate immune response with MyD88 as a key adaptor protein involved in the production of pro-inflammatory cytokines. We found that the absence of MyD88 also provided a pro-survival effect to the embryos after infection with K56-2. Paradoxically, the bacteria replicated better in myd88-/- mutant than wild type embryos, suggesting that it is not bacterial burden per se, but the inflammatory response that kills the embryos. Interestingly, cxcl8 and il1b expression were not significantly induced during the first 7 hours in the myd88-/- mutant while a strong induction was seen in control embryos, suggesting that a Myd88-dependent inflammatory response during early macrophage stages significantly contributes to fatal infection.Next, we performed RNAseq to analyse global changes in host gene expression during acute and persistent infection induced by K56-2 and B. stabilis LMG14294 respectively. Whereas acute infection was characterised by strong modulation of host gene expression increasing over time, persistent infection showed modulation of only a small set of genes. TLR and apoptosis signaling pathways were amongst the strongly activated groups during acute infection, in line with the strong inflammatory character of K56-2. During persistent infection, the major differentially expressed gene set concerned genes encoding complement proteins. The critical role for macrophages in Bcc infection in zebrafish is in agreement with recent clinical observations. We suggest that the intracellular stages of B. cenocepacia and the ensuing inflammatory response are essential targets to explore for the development of new therapies to combat this infection
3

Coutinho, Carla Patrícia da Silva. "Differentiation of clonal variants of the burkholderia cepacia complex isolated during chronic respiratory infection in cystic fibrosis patients with FTIR spectroscopy." Tese, Faculdade de Farmácia da Universidade do Porto, 2010. http://hdl.handle.net/10216/63817.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Coutinho, Carla Patrícia da Silva. "Differentiation of clonal variants of the burkholderia cepacia complex isolated during chronic respiratory infection in cystic fibrosis patients with FTIR spectroscopy." Doctoral thesis, Faculdade de Farmácia da Universidade do Porto, 2010. http://hdl.handle.net/10216/63817.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lowe, Carolyn Ann. "Iron regulation in Burkholderia cepacia and Burkholderia pseudomallei." Thesis, University of Sheffield, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.246990.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lewenza, William Shawn. "Quorum sensing in Burkholderia cepacia." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape2/PQDD_0017/NQ54796.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Mykrantz, Hallie B. "Investigation of Burkholderia cepacia Virulence." Miami University / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=miami1114116170.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Maxwell, Alison Irene. "Antimicrobial strategies against Burkholderia cepacia." Thesis, University of Edinburgh, 2000. http://hdl.handle.net/1842/22461.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The aim of this project was to investigate novel antimicrobial strategies against B. cepacia, based on natural antimicrobial compounds present in plants and human airways as protection against bacterial disease. The project focused on a panel of 20 strains of B. cepacia complex. Isolates included strains representing major epidemic clones of B. cepacia and exhibiting a range of susceptibilities to all classes of conventional antibiotics. The project is focused on two major themes. First, a study of antimicrobials from plants and second, examination of the antimicrobial activities of cationic peptides present in human airway secretions. The susceptibility of the B. cepacia strain panel to plant extracts was investigated, in particular the activity of aqueous garlic extract (AGE) and thyme oil. The MIC of thyme oil for all 20 strains was found to be 0.01%. MICs of AGE ranged from 0.25%-3%. Killing curves suggesting that AGE produces a slow killing effect over a twenty four hour period, whereas thyme oil kills bacterial cells in less than 20 minutes. By electron microscopy, no intact bacteria were observed after three minutes incubation with thyme oil. In contrast, two hours incubation with AGE produced morphological changes in the cellular structure of B. cepacia consistent with much slower damage to the bacterial cell membrane. Attempts were then made to purify and identify the chemical nature of the antimicrobial agents using reverse phase HPLC. AGE was shown to contain allicin along with other anti-cepacia compounds. Thyme oil was shown to comprise the phenols thymol and its isomer, carvacrol. Human (hBD-1) and murine (mBD-1) b-defensins were examined for activity against B. cepacia. In contrast to the salt-sensitive antimicrobial activity observed with Pseudomonas aeruginosa, no antimicrobial activity was observed against strains of B. cepacia.
9

McNeely, Damian. "Biocontrol of multidrug resistant Burkholderia cepacia." Thesis, University of Ulster, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.413831.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Detsika, Maria G. "Genetic variation amongst isolates of Burkholderia cepacia." Thesis, University of Liverpool, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.269724.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Infections à Burkholderia cepacia":

1

Williams, Kerry Ann. Exopolysaccharide production in Burkholderia cepacia. Manchester: University of Manchester, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

McNeely, Damian. Biocontrol of multidrug resistant Burkholderia cepacia. [S.l: The Author], 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Desai, Maya. Antibiotic resistance of burkholderia cepacia in patients with cystic fibrosis. Birmingham: University of Birmingham, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

McKenney, David. The cell surface and extracellular virulence determinants of Burkholderia Cepacia. Manchester: University of Manchester, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Baxter, Ian Anthony. Studies of the nature of Burkholderia cepacia in cystic fibrosis. Birmingham: Aston University. Department of Pharmaceutical and Biological Sciences, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lawrence, J. R. In-situ bioremediation of trichloroethylene using Burkholderia cepacia G4 PR1: Analysis of transport parameters for risk assessment. Gulf Breeze, FL: U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lawrence, J. R. In-situ bioremediation of trichloroethylene using Burkholderia cepacia G4 PR1: Analysis of transport parameters for risk assessment. Gulf Breeze, FL: U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lawrence, J. R. In-situ bioremediation of trichloroethylene using Burkholderia cepacia G4 PR1: Analysis of transport parameters for risk assessment. Gulf Breeze, FL: U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lawrence, J. R. In-situ bioremediation of trichloroethylene using Burkholderia cepacia G4 PR1: Analysis of transport parameters for risk assessment. Gulf Breeze, FL: U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lawrence, J. R. In-situ bioremediation of trichloroethylene using Burkholderia cepacia G4 PR1: Analysis of transport parameters for risk assessment. Gulf Breeze, FL: U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Infections à Burkholderia cepacia":

1

Sheridan, Elizabeth, Dervla Kenna, Jane Turton, and Emma Lake. "Burkholderia Cepacia Complex (BCC) in Cystic Fibrosis." In Case Studies in Infection Control, 23–33. London; New York : Taylor & Francis Group, [2018]: Garland Science, 2018. http://dx.doi.org/10.1201/9780203733318-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kidd, Timothy M. "Burkholderia cepacia Complex and Burkholderia gladioli." In PCR for Clinical Microbiology, 133–36. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9039-3_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Peters, Danielle L., Fatima Kamal, and Jonathan J. Dennis. "Burkholderia." In Laboratory Models for Foodborne Infections, 271–87. Boca Raton : CRC Press/Taylor & Francis, 2017. | Series: Food microbiology series: CRC Press, 2017. http://dx.doi.org/10.1201/9781315120089-18.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Drevinek, Pavel, and Eshwar Mahenthiralingam. "Burkholderia." In Molecular Typing in Bacterial Infections, 301–8. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-62703-185-1_18.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Moldenhauer, Jeanne. "The Problem of Burkholderia cepacia Complex (BCC) in Your Facility." In Disinfection and Decontamination, 165–78. Boca Raton : Taylor & Francis, [2019]: CRC Press, 2018. http://dx.doi.org/10.1201/9781351217026-10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Snell, Gregory, Olivia Smibert, and Elizabeth Tullis. "Burkholderia in Transplant: Important to Speciate and Important to Treat." In Emerging Transplant Infections, 1–19. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-01751-4_22-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Snell, Gregory, Olivia Smibert, and Elizabeth Tullis. "Burkholderia in Transplant: Important to Speciate and Important to Treat." In Emerging Transplant Infections, 391–408. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-25869-6_22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Mark, G. L., and J. W. Lorbeer. "The Response of Three Phenotypically Variable Burkholderia cepacia isolates to Copper-Based Bactericides." In Plant Pathogenic Bacteria, 315–18. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0003-1_72.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Peres, Caroline M., Henry Naveau, and Spiros N. Agathos. "Cross Induction of 4-Nitrobenzoate and 4-Aminobenzoate Degradation by Burkholderia Cepacia Strain PB4." In Novel Approaches for Bioremediation of Organic Pollution, 71–81. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4749-5_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mark, G. L., and J. W. Lorbeer. "Population Dynamics of the Onion Phytopathogen Burkholderia cepacia in Organic Soils Cropped to Onion." In Plant Pathogenic Bacteria, 341–44. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0003-1_77.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Infections à Burkholderia cepacia":

1

Pyle, Barry H., Susan C. Broadaway, and Gordon A. Mcfeters. "Burkholderia cepacia Biofilm Growth and Disinfection in Microgravity." In 31st International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2001. http://dx.doi.org/10.4271/2001-01-2128.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ramos, Christian G., Silvia A. Sousa, Andre M. Grilo, Paulo J. P. Da Costa, Joana R. Feliciano, and Jorge H. Leitao. "A RNomics-based strategy identifies regulatory small RNAs in Burkholderia cepacia complex." In 2011 1st Portuguese Meeting in Bioengineering ¿ The Challenge of the XXI Century (ENBENG). IEEE, 2011. http://dx.doi.org/10.1109/enbeng.2011.6026035.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Brunelli do Nascimento, Leonardo, João Henrique Dantas, Matheus Lopes Harth, Gisella Maria Zanin, and Flávio Faria de Moraes. "Modelagem cinética da produção de ésteres etílicos com lipase de Burkholderia cepacia." In Simpósio Nacional de Bioprocessos e Simpósio de Hidrólise Enzimática de Biomassa. Campinas - SP, Brazil: Galoá, 2015. http://dx.doi.org/10.17648/sinaferm-2015-33217.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bianco, Giuliana Del, Giovana Padilha, and Wellington Correa. "Síntese de lubrificante sustentável usando lipase imobilizada de Burkholderia cepacia em polihidroxibutirato (PHB)." In Congresso de Iniciação Científica UNICAMP. Universidade Estadual de Campinas, 2019. http://dx.doi.org/10.20396/revpibic2720192942.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sousa, Silvia A., Christian G. Ramos, Joana Feliciano, and Jorge H. Leitao. "Identification and exploitation of Burkholderia cepacia complex virulence factors as potential antimicrobial targets." In 2011 1st Portuguese Meeting in Bioengineering ¿ The Challenge of the XXI Century (ENBENG). IEEE, 2011. http://dx.doi.org/10.1109/enbeng.2011.6026036.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Afonso Bonetti Campos, Victor, and Giovana da Silva Padilha. "Obtenção de Ésteres Aromáticos usando imobilizado híbrido PÓS-PVA de lipase de Burkholderia cepacia." In XXIV Congresso de Iniciação Científica da UNICAMP - 2016. Campinas - SP, Brazil: Galoa, 2016. http://dx.doi.org/10.19146/pibic-2016-50795.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

DANTAS, J. H., M. L. HARTH, E. F. SOSTER, P. A. ARROYO, F. F. de MORAES, and G. M. ZANIN. "AVALIAÇÃO DAS VELOCIDADES DAS REAÇÕES DE TRANSESTERIFICAÇÃO CATALISADA POR LIPASE DE BURKHOLDERIA CEPACIA IMOBILIZADA." In XX Congresso Brasileiro de Engenharia Química. São Paulo: Editora Edgard Blücher, 2015. http://dx.doi.org/10.5151/chemeng-cobeq2014-1570-18623-147272.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

MARTINS, S. R. S., A. S. BARBOSA, A. S. LIMA, R. Y. CABRERA-PADILLA, R. L. SOUZA, and C. M. F. SOARES. "INFLUENCE OF THE APROTIC IONIC LIQUID OF Burkholderia cepacia LIPASE IMMOBILIZED ON HYBRID SUPPORT." In XXII Congresso Brasileiro de Engenharia Química. São Paulo: Editora Blucher, 2018. http://dx.doi.org/10.5151/cobeq2018-pt.0862.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Cassidy, C. M., A. L. Watters, R. F. Donnelly, and M. M. Tunney. "Investigation into the susceptibility of Burkholderia cepacia complex isolates to photodynamic antimicrobial chemotherapy (PACT)." In 12th World Congress of the International Photodynamic Association, edited by David H. Kessel. SPIE, 2009. http://dx.doi.org/10.1117/12.822874.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Pukhalskaya, Daria, Vassiliy Shmarin, Tatiana Bukina, Stanislav Krasovsky, Sergey Semykin, Maria Usacheva, Lucine Avakian, Nataliya Kashirskaya, and Galina Shmarina. "TNF and LTA gene polymorphisms in cystic fibrosis patients with Burkholderia cepacia complex (Bcc)." In ERS International Congress 2021 abstracts. European Respiratory Society, 2021. http://dx.doi.org/10.1183/13993003.congress-2021.pa2105.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії