Статті в журналах з теми "Semiconductor II-VI"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Semiconductor II-VI.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Semiconductor II-VI".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Gunshor, Robert L., and Arto V. Nurmikko. "II-VI Blue-Green Laser Diodes: A Frontier of Materials Research." MRS Bulletin 20, no. 7 (July 1995): 15–19. http://dx.doi.org/10.1557/s088376940003712x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The current interest in the wide bandgap II-VI semiconductor compounds can be traced back to the initial developments in semiconductor optoelectronic device physics that occurred in the early 1960s. The II-VI semiconductors were the object of intense research in both industrial and university laboratories for many years. The motivation for their exploration was the expectation that, possessing direct bandgaps from infrared to ultraviolet, the wide bandgap II-VI compound semiconductors could be the basis for a variety of efficient light-emitting devices spanning the entire range of the visible spectrum.During the past thirty years or so, development of the narrower gap III-V compound semiconductors, such as gallium arsenide and related III-V alloys, has progressed quite rapidly. A striking example of the current maturity reached by the III-V semiconductor materials is the infrared semiconductor laser that provides the optical source for fiber communication links and compact-disk players. Despite the fact that the direct bandgap II-VI semiconductors offered the most promise for realizing diode lasers and efficient light-emitting-diode (LED) displays over the green and blue portions of the visible spectrum, major obstacles soon emerged with these materials, broadly defined in terms of the structural and electronic quality of the material. As a result of these persistent problems, by the late 1970s the II-VI semiconductors were largely relegated to academic research among a small community of workers, primarily in university research laboratories.
2

Dietl, Tomasz, and Hideo Ohno. "Ferromagnetic III–V and II–VI Semiconductors." MRS Bulletin 28, no. 10 (October 2003): 714–19. http://dx.doi.org/10.1557/mrs2003.211.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractRecent years have witnessed extensive research aimed at developing functional, tetrahedrally coordinated ferromagnetic semiconductors that could combine the resources of semiconductor quantum structures and ferromagnetic materials systems and thus lay the foundation for semiconductor spintronics. Spin-injection capabilities and tunability of magnetization by light and electric field in Mn-based III–V and II–VI diluted magnetic semiconductors are examples of noteworthy accomplishments. This article reviews the present understanding of carrier-controlled ferromagnetism in these compounds with a focus on mechanisms determining Curie temperatures and accounting for magnetic anisotropy and spin stiffness as a function of carrier density, strain, and confinement. Materials issues encountered in the search for semiconductors with a Curie point above room temperature are addressed, emphasizing the question of solubility limits and self-compensation that can lead to precipitates and point defects. Prospects associated with compounds containing magnetic ions other than Mn are presented.
3

Chandra, B. P., V. K. Chandra, and Piyush Jha. "Luminescence of II-VI Semiconductor Nanoparticles." Solid State Phenomena 222 (November 2014): 1–65. http://dx.doi.org/10.4028/www.scientific.net/ssp.222.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Nanoparticle or an ultrafine particle is a small solid whose physical dimension lies between 1 to 100 nanometers. Nanotechnology is the coming revolution in molecular engineering, and therefore, it is curiosity-driven and promising area of technology. The field of nanoscience and nanotechnology is interdisciplinary in nature and being studied by physicists, chemists, material scientists, biologists, engineers, computer scientists, etc. Research in the field of nanoparticles has been triggered by the recent availability of revolutionary instruments and approaches that allow the investigation of material properties with a resolution close to the atomic level. Strongly connected to such technological advances are the pioneering studies that have revealed new physical properties of matter at a level intermediate between atomic/molecular and bulk. Quantum confinement effect modifies the electronic structure of nanoparticles when their sizes become comparable to that of their Bohr excitonic radius. When the particle radius falls below the excitonic Bohr radius, the band gap energy is widened, leading to a blue shift in the band gap emission spectra, etc. On the other hand, the surface states play a more important role in the nanoparticles, due to their large surface-to-volume ratio with a decrease in particle size (surface effects). From the last few years, nanoparticles have been a common material for the development of new cutting-edge applications in communications, energy storage, sensing, data storage, optics, transmission, environmental protection, cosmetics, biology, and medicine due to their important optical, electrical, and magnetic properties.
4

SAPRA, SAMEER, RANJANI VISWANATHA, and D. D. SARMA. "ELECTRONIC STRUCTURE OF SEMICONDUCTOR NANOCRYSTALS: AN ACCURATE TIGHT-BINDING DESCRIPTION." International Journal of Nanoscience 04, no. 05n06 (October 2005): 893–99. http://dx.doi.org/10.1142/s0219581x05003851.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We report a quantitatively accurate description of the electronic structure of semiconductor nanocrystals using the sp3d5 orbital basis with the nearest neighbor and the next nearest neighbor interactions. The use of this model for II–VI and III–V semiconductors is reviewed in article. The excellent agreement of the theoretical predictions with the experimental results establishes the feasibility of using this model for semiconductor nanocrystals.
5

Fujita, Shizuo, and Shigeo Fujita. "Photoassisted growth of II–VI semiconductor films." Applied Surface Science 86, no. 1-4 (February 1995): 431–36. http://dx.doi.org/10.1016/0169-4332(94)00454-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wörz, M., M. Hampel, R. Flierl, and W. Gebhardt. "Photoelectron Spectroscopy of II-VI Semiconductor Heterostructures." Acta Physica Polonica A 90, no. 5 (November 1996): 1113–17. http://dx.doi.org/10.12693/aphyspola.90.1113.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Cibert, J., D. Ferrand, S. Tatarenko, A. Wasiela, P. Kossacki, and T. Dietl. "Ferromagnetism in II-VI Based Semiconductor Structures." Acta Physica Polonica A 100, no. 2 (August 2001): 227–36. http://dx.doi.org/10.12693/aphyspola.100.227.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Cibert, J., D. Ferrand, H. Boukari, S. Tatarenko, A. Wasiela, P. Kossacki, and T. Dietl. "Ferromagnetism in II–VI-based semiconductor structures." Physica E: Low-dimensional Systems and Nanostructures 13, no. 2-4 (March 2002): 489–94. http://dx.doi.org/10.1016/s1386-9477(02)00177-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kumar, Sandeep, and Thomas Nann. "Shape Control of II–VI Semiconductor Nanomaterials." Small 2, no. 3 (March 2006): 316–29. http://dx.doi.org/10.1002/smll.200500357.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Cibert, J., D. Ferrand, H. Boukari, S. Tatarenko, A. Wasiela, P. Kossacki, and T. Dietl. "Ferromagnetism in II-VI-Based Semiconductor Structures." ChemInform 34, no. 1 (January 7, 2003): no. http://dx.doi.org/10.1002/chin.200301228.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Onodera, A. "Novel Ferroelectricity in II-VI Semiconductor ZnO." Ferroelectrics 267, no. 1 (January 2002): 131–37. http://dx.doi.org/10.1080/00150190210997.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Li, S., and G. W. Yang. "Phase Transition of II−VI Semiconductor Nanocrystals." Journal of Physical Chemistry C 114, no. 35 (August 18, 2010): 15054–60. http://dx.doi.org/10.1021/jp1056545.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Dang, Le Si, C. Gourgon, N. Magnea, H. Mariette, and C. Vieu. "Optical study of II-VI semiconductor nanostructures." Semiconductor Science and Technology 9, no. 11S (November 1, 1994): 1953–58. http://dx.doi.org/10.1088/0268-1242/9/11s/016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Lippens, P. E., and M. Lannoo. "Optical properties of II-VI semiconductor nanocrystals." Semiconductor Science and Technology 6, no. 9A (September 1, 1991): A157—A160. http://dx.doi.org/10.1088/0268-1242/6/9a/030.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Tütüncü, H. M., R. Miotto, and G. P. Srivastava. "Phonons on II-VI (110) semiconductor surfaces." Physical Review B 62, no. 23 (December 15, 2000): 15797–805. http://dx.doi.org/10.1103/physrevb.62.15797.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Lippens, P. E., and M. Lannoo. "Electronic structure of II–VI semiconductor nanocrystals." Materials Science and Engineering: B 9, no. 4 (September 1991): 485–87. http://dx.doi.org/10.1016/0921-5107(91)90078-a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Gupta, P., K. K. Chattopadhyay, S. Chaudhuri, and A. K. Pal. "II?VI semiconductor alloy films: Cd1?xZnxTe." Journal of Materials Science 28, no. 2 (1993): 496–500. http://dx.doi.org/10.1007/bf00357829.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Ricolleau, C., L. Audinet, M. Gandais, and T. Gacoin. "Structural transformations in II-VI semiconductor nanocrystals." European Physical Journal D 9, no. 1 (December 1999): 565–70. http://dx.doi.org/10.1007/pl00010951.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Neder, R. B., V. I. Korsunskiy, Ch Chory, G. Müller, A. Hofmann, S. Dembski, Ch Graf, and E. Rühl. "Structural characterization of II-VI semiconductor nanoparticles." physica status solidi (c) 4, no. 9 (September 2007): 3221–33. http://dx.doi.org/10.1002/pssc.200775409.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Yang, C. C., and S. Li. "Size Dependence of Optical Properties in Semiconductor Nanocrystals." Key Engineering Materials 444 (July 2010): 133–62. http://dx.doi.org/10.4028/www.scientific.net/kem.444.133.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
An extension of the classic thermodynamic theory to nanometer scale has generated a new interdisciplinary theory - nanothermodynamics. It is the critical tool for the investigation of the size-dependent physicochemical properties in nanocrystals. A simple and unified nanothermodynamic model for the melting temperature of nanocrystals has been established based on Lindemann’s criterion for the melting, Mott’s expression for the vibrational melting entropy, and Shi’s model for the size dependence of the melting point. The developed model has been extensively verified in calculating a variety of size- and dimensionality-dependent phase transition functions of nanocrystals. In this work, such a model was extended to explain the underlying mechanism behind the bandgap energy enhancement and Raman red shifts in semiconductor nanocrystals by (1) investigating the crystal size r, dimensionality d, and constituent stoichiometry x dependences of bandgap energies Eg in semiconductor quantum dots (QDs) and quantum wires (QWs); and (2) revealing the origin of size effect on the Raman red shifts in low dimensional semiconductors by considering the thermal vibration of atoms. For Eg, it is found that: (1) Eg increases with a decreasing r for groups IV, III-V and II-VI semiconductors and the quantum confinement effect is pronounced when r becomes comparable to the exciton radius; (2) the ratio of Eg(r, d)QWs/Eg(r, d)QDs is size-dependent, where Eg(r, d) denotes the change in bandgap energy; (3) the crystallographic structure (i.e. zinc-blende and wurtzite) effect on Eg of III-V and II-VI semiconductor nanocrystals is limited; and (4) for both bulk and nanosized III-V and II-VI semiconductor alloys, the composition effects on Eg are substantial, having a common nonlinear (bowing) relationship. For the Raman red shifts, the lower limit of vibrational frequency was obtained by matching the calculation results of the shifts with the experimental data of Si, InP, CdSe, CdS0.65Se0.35, ZnO, CeO2, as well as SnO2 nanocrystals. It shows that: (1) the Raman frequency (r) decreases as r decreases in both narrow and wide bandgap semiconductors; (2) with the same r, the sequence of size effects on (r) from strong to weak is nanoparticles, nanowires, and thin films; and (3) the Raman red shift is caused by the size-induced phonon confinement effect and surface relaxation. These results are consistent with experimental findings and may provide new insights into the size, dimensionality, and composition effects on the optical properties of semiconductors as well as fundamental understanding of high-performance nanostructural semiconductors towards their applications in optoelectronic devices.
21

Buijs, M., K. W. Haberern, T. Marshall, J. M. Gaines, K. K. Law, P. F. Baude, TJ Miller, M. A. Haase, and G. M. Haugen. "Device characteristics of green II–VI semiconductor lasers." Materials Science and Engineering: B 43, no. 1-3 (January 1997): 49–54. http://dx.doi.org/10.1016/s0921-5107(96)01831-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Esteves, Ana Catarina C., and Tito Trindade. "Synthetic studies on II/VI semiconductor quantum dots." Current Opinion in Solid State and Materials Science 6, no. 4 (August 2002): 347–53. http://dx.doi.org/10.1016/s1359-0286(02)00079-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Bandaranayake, R. J., G. W. Wen, J. Y. Lin, H. X. Jiang, and C. M. Sorensen. "Structural phase behavior in II–VI semiconductor nanoparticles." Applied Physics Letters 67, no. 6 (August 7, 1995): 831–33. http://dx.doi.org/10.1063/1.115458.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Cai, Xichen, James E. Martin, Lauren E. Shea-Rohwer, Ke Gong, and David F. Kelley. "Thermal Quenching Mechanisms in II–VI Semiconductor Nanocrystals." Journal of Physical Chemistry C 117, no. 15 (April 3, 2013): 7902–13. http://dx.doi.org/10.1021/jp400688g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Sarma, D. D., Ranjani Viswanatha, Sameer Sapra, Ankita Prakash, and M. García-Hernández. "Magnetic Properties of Doped II–VI Semiconductor Nanocrystals." Journal of Nanoscience and Nanotechnology 5, no. 9 (September 1, 2005): 1503–8. http://dx.doi.org/10.1166/jnn.2005.322.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Huynh, A., J. Tignon, Ph Roussignol, C. Delalande, R. André, R. Romestain, and Le Si Dang. "II-VI semiconductor microcavity angle-resolved coherent dynamics." physica status solidi (c), no. 5 (August 2003): 1401–4. http://dx.doi.org/10.1002/pssc.200303213.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Ptatschek, V., T. Schmidt, M. Lerch, G. Müller, L. Spanhel, A. Emmerling, J. Fricke, A. H. Foitzik, and E. Langer. "Quantized aggregation phenomena in II-VI-semiconductor colloids." Berichte der Bunsengesellschaft für physikalische Chemie 102, no. 1 (January 1998): 85–95. http://dx.doi.org/10.1002/bbpc.19981020111.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Pautrat, J. L. "II-VI Semiconductor microstructures : from physics to optoelectronics." Journal de Physique III 4, no. 12 (December 1994): 2413–25. http://dx.doi.org/10.1051/jp3:1994287.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Liu, Xinyu, and J. K. Furdyna. "Optical dispersion of ternary II–VI semiconductor alloys." Journal of Applied Physics 95, no. 12 (June 15, 2004): 7754–64. http://dx.doi.org/10.1063/1.1739291.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Shun-Lien Chuang, N. Nakayama, A. Ishibashi, S. Taniguchi, and K. Nakano. "Degradation of II-VI blue-green semiconductor lasers." IEEE Journal of Quantum Electronics 34, no. 5 (May 1998): 851–57. http://dx.doi.org/10.1109/3.668773.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Semaltianos, N. G., S. Logothetidis, W. Perrie, S. Romani, R. J. Potter, M. Sharp, P. French, G. Dearden, and K. G. Watkins. "II–VI semiconductor nanoparticles synthesized by laser ablation." Applied Physics A 94, no. 3 (August 26, 2008): 641–47. http://dx.doi.org/10.1007/s00339-008-4854-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Zandbergen, H. W., F. C. Mijlhoff, J. W. Richardson, and J. Mahy. "HREM on Cd1−xMnxSe, A II-VI semiconductor." Ultramicroscopy 21, no. 2 (January 1987): 206–7. http://dx.doi.org/10.1016/0304-3991(87)90143-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Drenten, R., J. Petruzzello, and K. Haberern. "II–VI Semiconductor blue-green laser device characteristics." Philips Journal of Research 49, no. 3 (January 1995): 225–44. http://dx.doi.org/10.1016/0165-5817(95)98698-w.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Ohtani, H., K. Kojima, K. Ishida, and T. Nishizawa. "Miscibility gap in II–VI alloy semiconductor systems." Journal of Alloys and Compounds 182, no. 1 (April 1992): 103–14. http://dx.doi.org/10.1016/0925-8388(92)90579-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Kumpf, Christian, Wolfgang Weigand, Arthur Müller, Joachim Wagner, Veit Wagner, Peter Bach, Georg Schmidt, Laurens W. Molenkamp, Jean Geurts, and Eberhard Umbach. "Surface reconstructions of II-VI compound semiconductor surfaces." physica status solidi (c) 4, no. 9 (September 2007): 3183–90. http://dx.doi.org/10.1002/pssc.200775425.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Fasoli, A., A. Colli, S. Hofmann, C. Ducati, J. Robertson, and A. C. Ferrari. "Shape-selective synthesis of II–VI semiconductor nanowires." physica status solidi (b) 243, no. 13 (November 2006): 3301–5. http://dx.doi.org/10.1002/pssb.200669142.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Wang, Zhihai, Bruce A. Bunker, Robert A. Mayanovic, Ursula Debska, and Jacek K. Furdyna. "Lattice Distortion and Ferroelectricity in IV-VI and II-VI Semiconductor Alloys." Japanese Journal of Applied Physics 32, S2 (January 1, 1993): 673. http://dx.doi.org/10.7567/jjaps.32s2.673.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Mohanan, Jaya L., Indika U. Arachchige, and Stephanie L. Brock. "Porous Semiconductor Chalcogenide Aerogels." Science 307, no. 5708 (January 21, 2005): 397–400. http://dx.doi.org/10.1126/science.1104226.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Chalcogenide aerogels based entirely on semiconducting II-VI or IV-VI frameworks have been prepared from a general strategy that involves oxidative aggregation of metal chalcogenide nanoparticle building blocks followed by supercritical solvent removal. The resultant materials are mesoporous, exhibit high surface areas, can be prepared as monoliths, and demonstrate the characteristic quantum-confined optical properties of their nanoparticle components. These materials can be synthesized from a variety of building blocks by chemical or photochemical oxidation, and the properties can be further tuned by heat treatment. Aerogel formation represents a powerful yet facile method for metal chalcogenide nanoparticle assembly and the creation of mesoporous semiconductors.
39

Sotomayor Torres, Clivia M., A. Ross, Y. S. Tang, A. Ribayrol, S. Thoms, A. S. Bunting, He Ping Zhou, et al. "Nanofabrication of II-VI Semiconductor Quantum Wires and Dots." Materials Science Forum 182-184 (February 1995): 87–92. http://dx.doi.org/10.4028/www.scientific.net/msf.182-184.87.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Zhang, B. P., W. X. Wang, T. Yasuda, Y. Segawa, H. Yaguchi, K. Onabe, K. Edamatsu, and T. Itoh. "Self-assembled, very long II–VI semiconductor quantum wires." Materials Science and Engineering: B 51, no. 1-3 (February 1998): 224–28. http://dx.doi.org/10.1016/s0921-5107(97)00265-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Nandhakumar, I. S., T. Gabriel, X. Li, G. S. Attard, M. Markham, D. C. Smith, and J. J. Baumberg. "Optical properties of mesoporous II–VI semiconductor compound films." Chem. Commun., no. 12 (2004): 1374–75. http://dx.doi.org/10.1039/b403423f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Kelley, Anne Myers. "Exciton-optical phonon coupling in II-VI semiconductor nanocrystals." Journal of Chemical Physics 151, no. 14 (October 14, 2019): 140901. http://dx.doi.org/10.1063/1.5125147.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Tanaka, Masanori. "Photoluminescence properties of Mn2+-doped II–VI semiconductor nanocrystals." Journal of Luminescence 100, no. 1-4 (December 2002): 163–73. http://dx.doi.org/10.1016/s0022-2313(02)00448-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Zamir, D., K. Beshah, P. Becla, P. A. Wolff, R. G. Griffin, D. Zax, S. Vega, and N. Yellin. "Nuclear magnetic resonance studies of II–VI semiconductor alloys." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 6, no. 4 (July 1988): 2612–13. http://dx.doi.org/10.1116/1.575516.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Hodes, Gary, and Barry Miller. "Thermodynamic Stability of II–VI Semiconductor‐Polysulfide Photoelectrochemical Systems." Journal of The Electrochemical Society 133, no. 10 (October 1, 1986): 2177–80. http://dx.doi.org/10.1149/1.2108365.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Ohtomo, A., M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa. "MgxZn1−xO as a II–VI widegap semiconductor alloy." Applied Physics Letters 72, no. 19 (May 11, 1998): 2466–68. http://dx.doi.org/10.1063/1.121384.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Dietl, T., and H. Ohno. "Ferromagnetism in III–V and II–VI semiconductor structures." Physica E: Low-dimensional Systems and Nanostructures 9, no. 1 (January 2001): 185–93. http://dx.doi.org/10.1016/s1386-9477(00)00193-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Crowell, P. A., V. Nikitin, J. A. Gupta, D. D. Awschalom, F. Flack, and N. Samarth. "Optical spectroscopy of II–VI (magnetic) semiconductor quantum dots." Physica E: Low-dimensional Systems and Nanostructures 2, no. 1-4 (July 1998): 854–57. http://dx.doi.org/10.1016/s1386-9477(98)00174-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Mingo, N. "Thermoelectric figure of merit of II–VI semiconductor nanowires." Applied Physics Letters 85, no. 24 (December 13, 2004): 5986–88. http://dx.doi.org/10.1063/1.1829391.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Drenten, R. R., K. W. Haberern, and J. M. Gaines. "Thermal characteristics of blue‐green II‐VI semiconductor lasers." Journal of Applied Physics 76, no. 7 (October 1994): 3988–93. http://dx.doi.org/10.1063/1.357344.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії