Dissertations / Theses on the topic 'Enseñanza de las matemáticas'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Enseñanza de las matemáticas.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Ortíz, Fernández Alejandro. "Ondículas : un modelo de enseñanza en matemática (Reflexiones sobre la enseñanza de la matemática)." Pontificia Universidad Católica del Perú, 2014. http://repositorio.pucp.edu.pe/index/handle/123456789/96865.
Full textJiménez, Gajardo Abelino Enrique. "Modelación de procesos cognitivos con aplicaciones en educación matemática." Tesis, Universidad de Chile, 2012. http://www.repositorio.uchile.cl/handle/2250/112312.
Full textEsta memoria fue concebida con el intento de ser un aporte a la Educación desde la Modelación Matemática de Procesos Cognitivos. En el Capítulo 1, se hace un recorrido por los principales aspectos de la Cognición Matemática y el Sentido Numérico, analizando el porqué de su importancia y los distintos enfoques para su estudio. El Capítulo 2 trata del problema de Representación de Estímulos y cómo medir su grado de similaridad. Junto con mostrar resultados clásicos de Psicofísica, se analizan los dos modelos de representación numérica más conocidos; el modelo de escala comprimida y el modelo lineal con variabilidad escalar. Se demuestra que ambos modelos pertenecen a una familia más general de representaciones que cumplen con las mismas propiedades fundamentales. Además, se describe una situación experimental en donde los modelos hacen predicciones distintas. En el Capítulo 3 se trabaja el problema de estimación de cantidades, esto es, frente a un determinado estímulo numérico no simbólico, por ejemplo, nubes de puntos, secuencias de tonos, etc. se pide estimar la numerosidad del estímulo. Para ello se propone y estudian dos modelos para explicar dicho fenómeno. Para uno de estos modelos, se obtiene predicciones acordes con los principales resultados experimentales conocidos. Finalmente, en el Capítulo 4, se aborda el tema del Aprendizaje de Fracciones. Para ello, se realizó un estudio con más de 200 niñas y niños de cuarto básico, con el fi n de comparar tres métodos de enseñanza. Se comparó la representación Geométrica de fracción (por ejemplo, 1/2 es equivalente a la mitad de un cuadrado), con una representación Temporal (1/2 equivale a recibir un dulce cada dos días) y con una representación de Intercambio (1/2 equivale a recibir un objeto por cada dos monedas que doy). La primera es una de las más utilizadas en textos escolares y en el aula, mientras que las otras son poco conocidas o se suelen presentar en otros contextos. Se encontraron diferencias en desempeño a favor de las representaciones Temporal y de Intercambio en la tarea de comparación de fracciones, siendo un hallazgo promisorio para la educación. Junto con esto, aprovechando la información se proponen tres metodologías para representar estímulos en una escala numérica y se construyó un modelo que permite estimar el impacto de cada método de enseñanza en el cambio de estrategias que los estudiantes utilizan para comparar fracciones. Se concluye que con períodos de entrenamiento breves, los estudiantes son capaces de cambiar la manera de contestar preguntas de fracciones fuera de un contexto metafórico, siendo esto una extensión de las investigaciones en torno a este tema.
Barquero, i. Farràs Berta. "Ecología de la Modelización Matemática en la enseñanza universitaria de las Matemáticas." Doctoral thesis, Universitat Autònoma de Barcelona, 2009. http://hdl.handle.net/10803/3110.
Full textUna vez situados en el ámbito de la Teoría Antropológica de lo Didáctico (TAD), que constituye el marco de referencia a la vez conceptual y metodológico de este trabajo, las nociones comunes de "enseñanza" y de "modelización matemática" son cuestionadas, analizadas y reconstruidas, para poder formular y abordar el problema que nos planteamos sin tener que asumir acríticamente los puntos de vista dominantes en las instituciones consideradas. Esta reformulación nos permitirá plantear el problema didáctico de la modelización matemática en términos del enfoque ecológico y que nos conducirá a la búsqueda de dispositivos didácticos que favorezcan la integración de la modelización matemática en la enseñanza universitaria.
Para abordar dicho problema didáctico proponemos el diseño y la implementación de un nuevo dispositivo didáctico, los Recorridos de Estudio e Investigación (REI) introducidos por Chevallard (2004, 2005 y 2006) como referentes para el análisis y el diseño de los procesos didácticos. Este nuevo dispositivo didáctico, en contraposición a la pedagogía "monumentalista", apuesta por la introducción de una nueva epistemología escolar que reemplaza el paradigma escolar de "inventariar" los saberes por un paradigma de cuestionamiento del mundo. En nuestro caso concreto, mostramos cómo un currículo oficial tradicional (como el de las matemáticas para un primer curso universitario de CCEE) puede "recubrirse" mediante un pequeño conjunto de REI generados, en nuestra propuesta, por cuestiones relativas al estudio de la dinámica de poblaciones.
La implantación de los REI bajo condiciones controladas por la investigación pone de manifiesto algunas de las principales condiciones y restricciones didácticas ligadas principalmente al contrato didáctico imperante en la enseñanza universitaria, permitiendo dar una primera aproximación a la "ecología de los REI". Para poder pensar en una integración generalizada de estos nuevos dispositivos bajo condiciones más normalizadas, proponemos explorar terrenos que van mucho más allá del aula y que abarcan la manera cómo la comunidad científica, e incluso la sociedad, considera las matemáticas en relación con las demás ciencias y lo que se entiende por enseñar y aprender (matemáticas y ciencias) en la universidad.
This thesis studies the teaching of mathematics in Natural Sciences universities. It focuses more specifically on the study of the 'ecology' of mathematical modelling on these institutions. That is, we study the necessary conditions so that mathematical modelling can 'survive' in this institutional environment, together with the current systems of education in university. We also explore the restrictions hindering the evolution of implementing these modelling activities.
We use the Anthropological Theory of the Didactic (ATD), which constitutes the conceptual and methodological framework in this work. Within this theory, we question, analyze and reconstruct the common notions of 'education' and of 'mathematical modelling'. We can then reformulate the didactic problem without accepting the dominant points of view in the institutions that we consider. We show the need of taking into account two essential dimensions of mathematics teaching and learning processes, which allows us to consider the didactic problem of mathematical modelling with an ecological perspective. This will lead us to the search of new didactic devices that favor the integration of the mathematical modelling in university education.
To approach the didactic problem, we propose the design and the implementation of a new didactic device, the Study and Research Courses (SRC), set forth by the ATD (Chevallard, 2004, 2005 and 2006), as the 'ideal' didactic organization for integrating mathematical modelling in current teaching systems. In contrast with the 'monumentalist' perspective, one of the main aims of the proposed SRC is to introduce of a new school epistemology that replaces the school paradigm of 'inventorying' knowledge by a paradigm of questioning of the world. In our case, we propose to study population dynamics and we show how the official traditional curriculum (the first university course in mathematics for the Natural Sciences) can 'be covered' by means of a small set of SRC.
The experimentation of the SRC can be considered as a first description of the 'local ecology' of mathematical modelling. They provide some important conditions for the implementation of SRC that integrate mathematical modelling as a main tool of the study and research process. A 'large-scale integration' of SRC beyond this local experimentation needs to extend this ecological study and consider restrictions that appear at different levels of generality, especially affecting the prevailing way with which mathematics and its teaching are currently considered in university institutions.
Sánchez, Mora Christian Ulises. "Design thinking - Innovación en la enseñanza de las matemáticas." Tesis de maestría, Universidad Autónoma del Estado de Mexico, 2020. http://hdl.handle.net/20.500.11799/110045.
Full textEl presente trabajo terminal de grado tuvo como propósito crear una alternativa de innovación en la enseñanza de las Matemáticas mediante el aprovechamiento del Diseño. Dentro del segundo nivel de la educación básica, en una escuela primaria tipo privada, docente y alumnos de segundo grado fueron protagonistas en este estudio. La metodología cualitativa estuvo basada en el método de la teoría fundamentada el cual precisó la recopilación de datos utilizados para descubrir teorías y el desarrollo de conceptos o proposiciones. Lo que se descubrió en este estudio fue la posibilidad de enriquecer la enseñanza de las Matemáticas a través del Design Thinking. Todo esto implicó el rediseño del proceso didáctico para guiar a los docentes en su práctica.
Consejo Nacional de Ciencia y Tecnología de México (CONACYT) a través de la beca número: 888589
Cruzado, Quispe Ever Franklin. "Problemas de optimización mediados por el geogebra que movilizan el concepto de derivada de funciones reales de variable real en estudiantes de ingeniería." Master's thesis, Pontificia Universidad Católica del Perú, 2018. http://tesis.pucp.edu.pe/repositorio/handle/123456789/12040.
Full textThe purpose of this research is to analyze how students from different engineering careers coordinate semiotic representation registers when solving optimization problems by mobilizing the derivative concept of real functions of real variable. Therefore, we consider as a research question. Do optimization problems in which is necessary to mobilize the concept of derivative of real functions of real variable favors the coordination between the different registers of semiotic representation in engineering students? For this study, we take the Theory of Semiotic Representation Registers as theoretical framework and as research method we use aspects of the case study. This theoretical framework allowed us to analyze why students have difficulties when solving optimization problems. For the experimental part of the research two optimization problems were elaborated mediated by the Geogebra and applied to students of Mechanical Engineering of a peruvian national university. The analysis of the results obtained by the students shows that there are difficulties when coordinating the registers in natural language, figural, algebraic and graphic, however it is concluded that the proposed optimization problems favor such coordination, since in the second optimization problem the students perform treatments and conversions in the mentioned registers with less difficulty respect to the first optimization problem.
Tesis
Navarrete, Ulloa Jairo Alfredo. "Algebraic models of conceptual metaphor: contributions to the understanding of mathematics learning processes." Tesis, Universidad de Chile, 2013. http://www.repositorio.uchile.cl/handle/2250/113481.
Full textThis thesis studies a human cognitive phenomenon called Conceptual Metaphor in the context of mathematics learning and reasoning. Metaphor enables the understanding of an abstract concept called target, e.g. numbers, in terms of a more concrete concept called source, e.g. piles of can-dies. Often, inferences from the source are carried to the target and applied there yielding some conclusions about the target. This is known as reasoning by analogy. Empirical evidence indicates that metaphor enhances learning. Converging evidence is pro-vided by working scientists who report the use of analogies while developing their theories. On the other hand, some people advise against its usage in education. They argue that politicians and communicators often lead people into erroneous conclusions by using metaphor, and then, analo-gies undermine objective reasoning. This discussion highlights the need for research to shed light into the learning mechanics underlying metaphor in order to understand its scope and limitations. This work presents a formal model of metaphor which can be used as a framework to study learning by analogy. Since the model is abstract, we use Chapter 1 to make ideas more concrete: we use our formalism for analize deeply a well known example. Along these lines, Chapter 5 presents formalizations of other metaphors frequently encountered in mathematics teaching. The model is built in Chapter 4 where the source and the target of a metaphor are formalized by a key concept named domain. Some results of this chapter are accompanied by cognitive in-terpretations, as for example, Theorems 40, 41, 42, and Proposition 26 can be seen as descriptions of how an analogy carries reasonings from its source to its target. Also, Theorems 30 and 31 sug-gest models for the process of learning by analogy. Finally, Chapter 4 presents some theoretical constructions such as products and coproducts of domains. Our metaphor model relates two domains, each one defined as a mixture of language and semantics. Most results of Chapter 4 need the premise that the two involved languages are compatible . Mathematically, they need a map able to preserve the structure determined by a syntactical operation called substitution. This compatibility notion is characterized for the case of language terms in Chapter 2 by applying unification theory and graph theory. And in Chapter 3, this compatibilitynotion is characterized for the case of the language formulas by adapting the methods of Chapter 2. Finally, one Appendix (Relational Spaces) presents another approach to study metaphor. There, domains are defined with semantics only, leaving language aside. Most of the results emphasized above are lost or at least weakened suggesting that the abstract information provided by symbols and the recursion provided by the grammar of the language are necessary to mimic metaphor s behavior. This observation, together with other results of this thesis, might point to a relation between the recursion property of human languages1 and the ability of learning by analogy. 1 The linguist Noam Chomsky claims that recursion is the only human component of the faculty of language [49].
Silva, Risco Pilar. "Aplicación de los procesos didácticos para mejorar las competencias matemáticas." Bachelor's thesis, Pontificia Universidad Católica del Perú, 2018. http://tesis.pucp.edu.pe/repositorio/handle/123456789/11500.
Full textTrabajo académico
Cabrera, Dios Yvone. "Aplicación de procesos didácticos para fortalecer las competencias matemáticas." Bachelor's thesis, Pontificia Universidad Católica del Perú, 2018. http://tesis.pucp.edu.pe/repositorio/handle/123456789/11213.
Full textTrabajo académico
La, Serna Durand Miriam Paola. "Aplicación de los procesos didácticos mejoran las competencias matemáticas." Bachelor's thesis, Pontificia Universidad Católica del Perú, 2018. http://tesis.pucp.edu.pe/repositorio/handle/123456789/11299.
Full textTrabajo académico
Castillo, Navarro Roberto Eduardo. "Estudio de modelo de tópicos aplicado a transcripciones de clases de matemáticas." Tesis, Universidad de Chile, 2016. http://repositorio.uchile.cl/handle/2250/142488.
Full textEl presente trabajo surge de la necesidad de explorar y luego evaluar métodos de clasificación para transcripciones de clases de matemáticas, en el contexto de la investigación del quehacer docente desde un punto de vista cualitativo y cuantitativo realizada desde el Centro de Investigación Avanzada en Eduación (CIAE). En su primera sección se encuentra una breve descripción de las técnicas utilizadas y a explorar. El segundo capítulo enumera y describe posibles metodologías para evaluar el desempeño de las técnicas de clasificación a utilizar u otras que podrían implementarse a futuro. Se observan algunas de sus características, con el fin de entender sus méritos como herramientas de evaluación y justificar la elección de alguna de ellas. Finalmente se presentan los resultados obtenidos al aplicar la metodología de evaluación a datos reales correspondientes a transcripciones de grabaciones de clases proporcionadas en forma voluntaria por docentes que decidieron colaborar con la investigación realizada por CIAE.
Giaconi, Smoje Valentina Sofía. "Aportes del análisis psicométrico a la comprensión de la estructura del conocimiento matemático para enseñar." Tesis, Universidad de Chile, 2012. http://www.repositorio.uchile.cl/handle/2250/112551.
Full textA nivel internacional se ha caracterizado una estructura del conocimiento matemático de los profesores que es específico de la tarea de enseñar matemática y se ha acumulado evidencia en cuanto a que explica significativas ganancias de aprendizaje en los alumnos. En esta estructura se distinguen seis factores que se agrupan en dos categorías: el conocimiento disciplinar y el conocimiento pedagógico del contenido. En esta memoria se trabajó con los datos resultantes de la aplicación de un instrumento diseñado para medir el conocimiento de alumnos y matemáticas (CAM), que forma parte del conocimiento pedagógico del contenido. Además se utilizaron los datos resultantes de la aplicación simultánea de una prueba internacional que evalúa dos componentes del conocimiento disciplinar: el conocimiento matemático común y el conocimiento matemático especializado, para compararlos con los de la prueba CAM, y aportar así tanto a su validez como a la comprensión de la estructura del conocimiento mencionado. Por otra parte para determinar la validez y confiabilidad de las mediciones de un constructo teórico es necesario entender, utilizar y analizar los resultados de diversos modelos matemáticos. En la presente memoria primero se estudiaron y describieron estos modelos y luego se aplicaron a las dos pruebas mencionadas. En la introducción de esta memoria se describe el marco teórico del conocimiento matemático de los profesores que es específico de la tarea de enseñar . En el segundo capítulo se describen los métodos de análisis factoriales exploratorio y confirmatorio. En la parte de resultados de este capítulo se muestra la aplicación de los métodos de análisis factorial exploratorio para determinar las dimensiones que mide la prueba CAM y realizar una selección de ítems que sea unidimensional. También se utilizó el método de análisis factorial confirmatorio para confirmar la hipótesis de que los constructos conocimiento matemático común y específico y conocimiento de alumnos y matemáticas son distinguibles. En el tercer capítulo se describe la teoría clásica de test con especial énfasis en el concepto de confiabilidad y su estimación. En la sección de resultados se determina la confiabilidad de la prueba CAM total y la selección de ítems. Se presenta también el cálculo y análisis de los estadísticos de los ítems. En el cuarto capítulo se describe la Teoría de Respuesta al Ítem (TRI o IRT). Primero se describen dos modelos de la TRI: el modelo de un parámetro (Rasch) y el de dos parámetros. Se presenta la aplicación de estos modelos a la prueba CAM, en particular se describe la relación entre los ítems y las personas. Por último se presentan las conclusiones. Se obtuvo una prueba que permite evaluar el conocimiento de alumnos y matemáticas con un buen nivel de confiabilidad y validez.
Chavez, Osores Blanca Rosa. "Implementación de los procesos didácticos para mejorar las competencias matemáticas: plan de acción." Bachelor's thesis, Pontificia Universidad Católica del Perú, 2018. http://tesis.pucp.edu.pe/repositorio/handle/123456789/11236.
Full textTrabajo académico
Paucar, Chura Elva Carmen. "El uso de las situaciones de incertidumbre de la vida cotidiana para verificar el uso de la noción suceso aleatorio desde la teoría de las situaciones didácticas." Master's thesis, Pontificia Universidad Católica del Perú, 2015. http://tesis.pucp.edu.pe/repositorio/handle/123456789/6746.
Full textThis research aims to validate an educational sequence using uncertain situations of everyday life and builds the notion of random event as a possible event, impossible event, certain event and event as more likely. It should be noted that this item is present in the guidelines of the Ministry of Education is very important in the daily lives of the students, because the uncertainties are present in reality and , before them , we need to know to make the best decisions. In addition, the teaching of probability in everyday issues is a source of development of a necessary skill in our life: the knowledge argument. For the design of a didactic sequence to develop the notion of random event, it has been fundamental theory of didactic situations Brousseau. Also, the methodological development to realize this sequence process is supported by the Teaching Engineering Artigue. Finally, we analyze the results of the experimentation of the teaching sequence and confronted with a priori analysis. This comparison allowed us to observe the achievements and difficulties presented students. From this, we can say that students respond satisfactorily achieved their tasks and, through the process of building their findings, we conclude that the students developed notions of random event, an issue we raised in our research objective. On the other hand, a very important aspect of this work is the teaching sequence generating arguments used by the students in the validation phase because the competition argument is that students should develop.
Tesis
Vásquez, Torres Alex Lenin. "Innovación matemática en el estudio de matrices en la educación básica regular peruana aplicando criterios de idoneidad." Master's thesis, Pontificia Universidad Católica del Perú, 2014. http://tesis.pucp.edu.pe/repositorio/handle/123456789/5497.
Full textTesis
Sosa, Noriega Consuelo. "Aplicación de los procesos didácticos para fortalecer las competencias matemáticas." Bachelor's thesis, Pontificia Universidad Católica del Perú, 2018. http://tesis.pucp.edu.pe/repositorio/handle/123456789/11502.
Full textTrabajo académico
Berrú, Cubas Dandy. "Desarrollo de estrategias metodológicas matemáticas, en el nivel secundario." Bachelor's thesis, Pontificia Universidad Católica del Perú, 2018. http://tesis.pucp.edu.pe/repositorio/handle/123456789/11654.
Full textTrabajo académico
Urbina, Vargas Mary. ""Procesos de enseñanza aprendizaje en el área de matemática"." Bachelor's thesis, Pontificia Universidad Católica del Perú, 2018. http://tesis.pucp.edu.pe/repositorio/handle/123456789/10468.
Full textTrabajo académico
Morales, Martínez Zenón Eulogio. "Influencia de la coordinación de teorías de educación matemática en el aprendizaje de las matemáticas." Universidad Peruana de Ciencias Aplicadas (UPC), 2017. http://hdl.handle.net/10757/624355.
Full textAyma, Medina Maribel. "Análisis del libro oficial de texto de matemática de cuarto año de secundaria en relación con el objeto matemático fracciones algebraicas desde la perspectiva del EOS." Master's thesis, Pontificia Universidad Católica del Perú, 2018. http://hdl.handle.net/20.500.12404/13748.
Full textThe objective of this paper is to analyze the tasks developed and proposed in the official text of mathematics in the fourth year of secondary school in 2012, related to the mathematical object algebraic fractions, object of study established in the National Curricular Design (2009), which was taught in the level VII of secondary education in the public institutions of the country and is used in diverse mathematical contents at a superior level. To make the analysis of our object of study, algebraic fractions, it is necessary to work with the analysis tools offered by the Ontosemiótico Approach of Cognition and Mathematical Instruction, better known as EOS, which help to identify the objects activated in the mathematical practice of our study. The analysis of elaborate epistemic configurations, in which the primary mathematical objects are presented: concepts, languages, problems, propositions, procedures and arguments; they serve both to determine institutional meanings, and to identify the concepts and procedures used in solving tasks on algebraic fractions. In addition, by identifying the processes and concepts of the tasks proposed and developed in the text material, the category of simple and complex tasks is performed according to the cognitive demand proposed by Stein. Likewise, it is necessary to rely on the descriptors of the structural sense, procedural and structural approach, to determine the level of cognitive requirement presented by the tasks of the official text of mathematics 2012. Finally, after the respective analysis, we have concluded that the mathematical tasks of algebraic fractions that were proposed to students of public secondary education, have low epistemic suitability, which allows us to reflect on how the tasks are being proposed in the official text of Mathematics of fourth year of secondary school.
Tesis
Jimenez, Cedillo Juan De Dios. "Aplicación de procesos pedagógicos para la mejora de las competencias matemáticas: plan de acción." Bachelor's thesis, Pontificia Universidad Católica del Perú, 2018. http://tesis.pucp.edu.pe/repositorio/handle/123456789/11298.
Full textTrabajo académico
Torres, Ninahuanca Carlos. "Creación de problemas sobre funciones cuadráticas por profesores en servicio mediante una estrategia que integra nociones del análisis didáctico." Master's thesis, Pontificia Universidad Católica del Perú, 2016. http://tesis.pucp.edu.pe/repositorio/handle/123456789/7226.
Full textIn recent years, mathematical problem posing has been gaining considerable attention as a tool to innovate the role of problem solving in mathematics teaching and learning. This role about problem posing should be handled by mathematics teacher, who must have the competence to develop it. This study explores problem posing by means of a strategy mathematical problem posing which involves notions of didactic analysis and it pretends to contribute in how we formulate mathematical problems with didactical emphasis for teaching and learning in quadratic functions environment. For this purpose, problem posing workshop with in-service teachers are implemented and these activities include didactical experiences, cognitive and epistemic configurations, analysis of mathematical practices, these two last tools belong to the onto-semiotic approach of cognition and mathematical instruction (OSA), besides that the posed problems focus in didactical aspects are assessed through a rubric which has been developed using indicators of didactical suitability introduced in the OSA. By using a case study and the methodological procedures such as triangulation of research and content analysis, the results of the study show evidence to indicate a relationship between problem-posing and problem solving. We state this relationship based in our results and these confirm another results found in the literature about problem posing (e.g. Yuan & Sriraman, 2011; Cai & Hwang, 2002; Crespo, 2003; Silver, 2013; Abu-Elwan, 1999; Kar, Ozdemir, Ipek, & Albayrak, 2010). Finally, some suggestions and recommendations for further research which use the strategy implemented in this study are provided.
Tesis
Quintanilla, Cóndor Cerapio Nicéforo. "Un estudio sobre las concepciones del concepto de función desde la perspectiva de la teoría APOS." Master's thesis, Pontificia Universidad Católica del Perú, 2009. http://tesis.pucp.edu.pe/repositorio/handle/123456789/1194.
Full textTesis
Quentasi, Mamani Ederd. "Análisis de una organización matemática de la función y la proporcionalidad directa en un libro de texto de matemáticas de educación secundaria." Master's thesis, Pontificia Universidad Católica del Perú, 2015. http://tesis.pucp.edu.pe/repositorio/handle/123456789/6747.
Full textThis research aims to analyze the mathematical organization of a unit including function and direct proportionality in a textbook of mathematics for the first year of highschool, and to determine if there is an interaction between the linear function and the direct proportionality. The issue we address can be summed up in the following question: what is the mathematical organization of the unit including function and direct proportionality in a textbook of mathematics for the first year of highschool? To answer this question, we use Chevallard’s Anthropological Theory of the Didactic as a basis. The research is bibliographical with a qualitative approach. To organize the study, we use Fonseca’s components of mathematical organization, and for the analysis, we use his completeness indicators of a local mathematical organization, as well as the algebraization levels of the magnitude proportionality developed by Bolea, Bosch and Gascón. The results of the research show 17 types of tasks, 42 tasks, 38 techniques, 18 technologies and 2 theories. Regarding the level of completeness of the mathematical organization, we concluded that it is low, since a clear presence of the completeness indicators is not verified. In addition, it was verified that in the analyzed unit there is no interaction between the linear function and the direct proportionality.
Tesis
Lam, Pimentel Luis Fernando. "El caso 0.999...=1 en didáctica de las matemáticas : un estado del arte desde el análisis no-estándar." Master's thesis, Pontificia Universidad Católica del Perú, 2020. http://hdl.handle.net/20.500.12404/17171.
Full textNonstandard Analysis is a rigorous formalization of Leibniz’s calculus in which key calculus concepts are defined by means of infinitesimals, among other notions. It is a less known analysis than the Standard Analysis usually taught, based on epsilon-delta definitions. In the absence of presuppositions from Standard Analysis the symbol 0.999… is ambiguous and it is feasible to do a nonstandard interpretation of it in which 0.999...<1. It is postulated that in research on the case of 0.999...=1 students may not be familiarized with presuppositions of Standard Analysis needed to do a standard interpretation of the equality 0.999...=1. In the absence of such presuppositions it is possible for some students to make an interpretation based on conceptions different from Standard Analysis and that are close to Nonstandard Analysis, making justifiable their rejection of the equality 0.999...=1. This possibility makes it necessary to conduct a state of the art, understood as a documentbased investigation of critical and interpretive character, in which previous research on the case of 0.999...=1 is revised, taking Nonstandard Analysis as a reference. The aim is to pinpoint limitations in the analysis of student conceptions -offering alternative analysis when possible- and in procedures employed to promote acceptance of the equality 0.999...=1. This would contribute to an understanding of the resistance observed in some students to said equality, and the inefficacy of certain procedures used to teach it. Results show the presence of conceptions similar to nonstandard ones in participants of previous research throughout the decades. It is also shown how some procedures used to promote acceptance of the equality 0.999...=1 may lose efficacy when submitted to a nonstandard interpretation. The necessity to consider the implications of Nonstandard Analysis in future research is postulated.
Tesis
Marchan, Garcia Aracelly Danir. "Uso de estrategias didácticas innovadoras para fortalecer capacidades matemáticas y de lectura." Bachelor's thesis, Pontificia Universidad Católica del Perú, 2018. http://tesis.pucp.edu.pe/repositorio/handle/123456789/11551.
Full textTrabajo académico
Valdebenito, Méndez Rubén Gustavo Nelson Bernardo. "Sistema de Apoyo para el Desarrollo de Habilidades Matemáticas en Alumnos de Enseñanza Media." Tesis, Universidad de Chile, 2011. http://repositorio.uchile.cl/handle/2250/102705.
Full textChumpitaz, Malpartida Luis Daniel. "La génesis instrumental : un estudio de los procesos de instrumentalización en el aprendizaje de la función definida por tramos mediado por el software GeoGebra con estudiantes de ingeniería." Master's thesis, Pontificia Universidad Católica del Perú, 2013. http://tesis.pucp.edu.pe/repositorio/handle/123456789/4514.
Full textTesis
Calero, Cerna Jenny Isabel. "El método didáctico de resolución de problemas en el aprendizaje de la asignatura de Matemática, en los estudiantes de Segundo Semestre de Contabilidad, I.S.T.P. “Joaquín Reátegui Medina”, Nauta, 2009." Bachelor's thesis, Universidad Nacional Mayor de San Marcos, 2011. https://hdl.handle.net/20.500.12672/1664.
Full textTesis
Sarmiento, Santana Mariela. "La enseñanza de las matemáticas y las Ntic. Una estrategia de formación permanente." Doctoral thesis, Universitat Rovira i Virgili, 2004. http://hdl.handle.net/10803/8927.
Full textThe incorporation of calculation laboratories in some public schools of Trujillo-Venezuela opens a group of possibilities in the field of the Mathematics' teaching-learning but also new necessities of the faculty's formation, knowledge of new teaching strategies, design of materials and new work relationships between the educational ones and the means. This investigation explains our experience with educational of II stage of basic education for who have designed and applied a formation course, in the knowledge and use author's tool Clic 3.0 that allows them to design and develop multimedia resource that have applied to their audiences to take place. We also propose a prototype for the teaching of the multiplication of natural numbers after two processes of internal and external evaluation. The study follows the interpretive focus, an investigation model develops where we integrate quantitative and qualitative methodologies and is based on a study of cases referred to the implementation of an innovation program where the main characters are a group of teachers and their students.
Torres, Martín Eugenia. "El conocimiento del profesor de matemáticas en la práctica: enseñanza de la proporcionalidad." Doctoral thesis, Universitat Autònoma de Barcelona, 2015. http://hdl.handle.net/10803/290741.
Full textThe following thesis belongs to the field of didactics in mathematics, specifically in the research on the analysis of teaching practice by the mathematics teacher in the classroom. Its overall research objective is the analysis of teaching activity regarding the specific issue of proportionality and the levels involved in the study are Sixth grade of Primary and the First grade of Secondary. The cornerstones on which the theoretical framework of this research rests, focusing on the construction of knowledge for teaching proportionality, are: Knowledge Quartet (Rowland, 2005, 2008, 2009), the Mathematical Knowledge for Teaching (Ball 2008), particularly the Horizon Content Knowledge, and the factors involved in the multiplicative reasoning and the proportionality (Lamon, 2007). Understanding proportionality means understanding the underlying structure in situations in which there is a relationship between two invariant magnitudes that are related and simultaneously changing its structure. Understanding the proportionality involves relating the scalar ratio between two values of the same magnitude and the proportionality ratio between the two magnitudes, and, at the same time, to examine the function of proportionality. One of the objectives of the work, from the methodological point of view, involved the construction of indicators for the analysis of the teacher’s practice, according to Rowland’s Knowledge Quartet model (Foundation-Transformation-Connection-Contingency). This model was chosen because it is a conceptual framework based on the practice, suitable for analyzing in-class episodes, focusing primarily on the mathematical content of the episode and the teacher’s role of the Subject Matter Knowledge (SMK) and the Pedagogical Content Knowledge (PCK). The methodology is qualitative and is focused on case studies: students were observed and recorded in Sixth grade of Primary and the First grade of Secondary, obtaining data for our research from classroom recordings in a two successive years (data collected in the project EDU 2009-07298). This has been a proper context for studying both teaching practice- both for Elementary teacher of general training and for Secondary teacher of specialist-training, and study the transition from Primary to Secondary. From a total of 48 episodes, 15 of Sixth grade of Primary and 33 of First grade of Secondary, 6 of them were selected and analyzed (corresponding to two different teachers, one in Primary and one in Secondary) to be analyzed on how the teacher builds proportionality concept, explains a technique such as reduction to unity and relates this technique with the concept. The results of the research have allowed us, first, to develop an instrument for analysis of teaching in the classroom; secondly, to analyze, from the teaching practice side, what the objectives of the teacher are in order to teach the subject of proportionality and how to build the concept of proportionality; and finally, to explain what the consequences of a particular construction of the concept of proportionality are in the learning process of a particular student. The practice analysis conducted in this research has shown us the importance of the choice of particular examples so as to understand both the concept of proportionality and the reduction technique unit. It has also shown us that splitting teaching from learning makes no sense, since a particular teaching model corresponds to a particular learning process that leads to both a construction of concepts by students and a set of difficulties.
Chicoma, Ipanaqué Mauricio Mercedes. "Estrategias metodológicas eficaces para el proceso de enseñanza –aprendizaje en el área de matemática." Bachelor's thesis, Pontificia Universidad Católica del Perú, 2018. http://tesis.pucp.edu.pe/repositorio/handle/123456789/11404.
Full textTrabajo académico
Salvo, Mondragon Karina. "Procesos didácticos en el área de matemáticas." Bachelor's thesis, Pontificia Universidad Católica del Perú, 2018. http://tesis.pucp.edu.pe/repositorio/handle/123456789/10940.
Full textTrabajo académico
Guerra, Alvarado Vladimir D. "La Conducción del método heurístico en la enseñanza de la matemática." Universidad Nacional Mayor de San Marcos. Programa Cybertesis PERÚ, 2009. http://www.cybertesis.edu.pe/sisbib/2009/guerra_av/html/index-frames.html.
Full text(UPC), Universidad Peruana de Ciencias Aplicadas, and Baertl Rossana Barros. "Enseñando principios matemáticos a niños de los primeros grados de primaria." Universidad Peruana de Ciencias Aplicadas (UPC), 2012. http://hdl.handle.net/10757/285386.
Full textGómez, Huacso Alexander Saúl. "Análisis de una praxeología matemática de las inecuaciones lineales en los libros didácticos de educación secundaria." Master's thesis, Pontificia Universidad Católica del Perú, 2018. http://tesis.pucp.edu.pe/repositorio/handle/123456789/13586.
Full textVarious investigations in the field of mathematics education report the students' difficulties in solving inequations, an example of this error is manifested by transposing negative factors in an inequality, since students assume that to solve an inequality the same procedure used to solve an equation can be used. On the other hand, when reviewing the curricular programs of regular basic education of our country, we identify our object of study in said curricular programs. Thus, this research work aims to analyze a mathematical praxeology of linear inequalities, said praxeology reconstructed from the review of a collection of didactic books at secondary level, which are distributed by the Ministry of Education of Peru. For the reconstruction and analysis of mathematical praxeology we use as a theoretical and methodological framework the Anthropological Theory of the Didactic (ATD) proposed by Chevallard (1999), likewise, an analysis of the degree of completeness of the reconstructed mathematical praxeology is presented to the indicators proposed by Fonseca (2004). As a result of our research work we describe the characteristics of the dominant epistemological model present in the collection of didactic books, where we identify the predominance of the resolution of inequations by means of algebraic techniques.
Tesis
Toro, Vidal Valentina Andrea. "Entendiendo la toma de decisiones en aula de profesores de matemática en instituciones de acceso abierto." Tesis, Universidad de Chile, 2017. http://repositorio.uchile.cl/handle/2250/147440.
Full textEn el sistema de educación superior en Chile, la educación matemática y los profesores de institutos profesionales y centros de formación técnica son poco observados. Considerando la influencia de la asignatura matemática en la retención en educación superior y la distribución socioeconómica de los estudiantes de IP y CFT, estudiar a los profesores de matemática de estas instituciones es importante para la generación de aprendizaje y proyecciones de futuro de una población que ha tenido poco acceso a una educación de calidad. Esta investigación se suma a los pocos antecedentes existentes en este sentido y es un aporte para entender las decisiones que toman los profesores de matemática en el aula. Se desarrolla en el contexto de un desarrollo profesional en una institución de educación superior de acceso abierto, el cual busca promover la Resolución de Problemas, una metodología de enseñanza activa. Los datos de esta investigación se obtuvieron de transcripciones de sesiones de análisis de video, en las cuales profesores observaban sus propias implementaciones en aula de la metodología. El análisis de los datos se basó en la teoría de Obligaciones Profesionales, que plantea que los profesores de matemática responden a cuatro normas implícitas asociadas a su posición. Se clasificaron las justificaciones de prácticas en sala entregadas por los docentes y se profundizaron aquellas obligaciones profesionales con mayor presencia. Los resultados muestran evolución de los docentes durante el desarrollo profesional, tanto en cuánto justifican como en la variedad de obligaciones profesionales presentes en esas justificaciones. Se detecta también que los docentes sienten fuerte obligación hacia la disciplina matemática y hacia sus estudiantes vistos como un conjunto, es decir, hacia el colectivo. Estas dos obligaciones son analizadas en profundidad, detectando para cada una tres temáticas principales. Se ratifica que la teoría de Obligaciones Profesionales es aplicable en el contexto de instituciones de educación superior chilenas. Además, se muestra que los docentes de esta institución tienen fuerte interés en transmitir prácticas inherentes a la matemática, como lo son la interiorización y profundización de conocimiento. Asimismo, estos docentes demuestran una gran responsabilidad hacia sus estudiantes, lo cual se refleja en su disposición por llevar la metodología activa de forma prolija, por realizar buenas actividades en sala y por fomentar un ambiente armonioso. También esta memoria contribuye con sugerencias y advertencias metodológicas al uso de análisis de videos y a desarrollos profesionales en general. Finalmente, se considera que un aporte esencial de este estudio es volver protagonistas a profesores de matemática que generalmente no son considerados como objeto de investigación en Chile.
López, Huayhualla Solangela Natividad. "La Transnumeración: un estudio de la variación con profesores de matemática." Master's thesis, Pontificia Universidad Católica del Perú, 2017. http://tesis.pucp.edu.pe/repositorio/handle/123456789/9100.
Full textDue to the difficulties identified in the teaching of statistics regarding variation and its measures, the present research deals with the work with teachers of mathematics, on the processes of transnumeration, as part of the Statistical Thinking, in the study of the variation in base to the notions of the mean and standard deviation. Our work is based on the theoretical foundations of Wild and Pfannkuch (1999) and allowed us to answer our research question: How are transnumeration processes presented when developing activities on variation in mathematics teachers? Our research methodology was qualitative, specifically the case study. In the implementation of our activities, 14 teachers of mathematics of the Regular Basic Education (EBR) participated in three meetings, where the points chart was specifically treated, the study of variation in one and two data sets. According to our results, we were able to observe the processes of transnumeration carried out by the teachers that led them to understand the variation and how the point graph, through the software geogebra, allowed them to mobilize diverse statistical notions, beyond performing calculations. In addition, we were able to verify some conceptions and obstacles of teachers regarding the teaching of statistics.
Tesis
Martinez, Neciosup Jorge Luis. "Desarrollo de los procesos de enseñanza aprendizaje del área de matemática." Bachelor's thesis, Pontificia Universidad Católica del Perú, 2018. http://tesis.pucp.edu.pe/repositorio/handle/123456789/10504.
Full textTrabajo académico
Rodríguez, Díaz Maritza. "Aprendo matemáticas a través de juegos y material concreto." Bachelor's thesis, Pontificia Universidad Católica del Perú, 2018. http://hdl.handle.net/20.500.12404/14448.
Full textTesis de segunda especialidad
Delgado, Bolivar Ana Karina. "Un estudio, desde el enfoque lógico semiótico, de las dificultades de alumnos de tercer año de secundaria en relación a los polinomios." Master's thesis, Pontificia Universidad Católica del Perú, 2011. http://tesis.pucp.edu.pe/repositorio/handle/123456789/4732.
Full textTesis
Guerra, Alvarado Vladimir David. "La Conducción del método heurístico en la enseñanza de la matemática." Bachelor's thesis, Universidad Nacional Mayor de San Marcos, 2009. https://hdl.handle.net/20.500.12672/2412.
Full textTesis
Huapaya, Gómez Enrique. "Modelación usando función cuadrática : experimentos de enseñanza con estudiantes de 5to de secundaria." Master's thesis, Pontificia Universidad Católica del Perú, 2012. http://tesis.pucp.edu.pe/repositorio/handle/123456789/1571.
Full textResearch in Mathematics Education on learning of the quadratic function, show that high school students have difficulty learning this concept. Our experience as teachers corroborated this deficiency, so this paper presents a proposal based on experiments of Education, where the practice in modeling of problem situations FUNCIONSWIN32 supported plotter and Excel spreadsheet facilitates the learning of the Quadratic Function theoretical framework underlying our research is the Theory of Semiotics Representations records (TRRS) Duval (2004). As a research methodology, we use the Cobb Experiment Design (2003). The results show that students perform effectively modeling practices, supported by Excel and the graphing FUNCIONSWIN32, articulating and coordinating records representing the quadratic function because they are able to associate the quadratic function subject to two or more performances during the modeling practices.
Tesis
De, Lama Carrillo Felix Arcangel. "Estrategias de enseñanza de matemática y su impacto en los aprendizajes." Bachelor's thesis, Pontificia Universidad Católica del Perú, 2018. http://tesis.pucp.edu.pe/repositorio/handle/123456789/11105.
Full textTrabajo académico
Díez, Palomar Francisco Javier. "Enseñanza de las matemáticas en la educación de personas adultas: un modelo dialógico, La." Doctoral thesis, Universitat de Barcelona, 2004. http://hdl.handle.net/10803/1310.
Full textEn la tesis se parte de tres hipótesis: 1) existe una brecha entre las matemáticas de la vida real y las matemáticas académicas. Esta brecha se manifiesta de diferentes formas; 2) la distancia entre las "matemáticas de la vida real" y las "matemáticas académicas" genera actitudes negativas que dificultan el aprendizaje de las matemáticas; y 3) las personas utilizan estilos de aprendizaje basados en el diálogo igualitario para aprender el concepto matemático de proporciones. Para contrastarlas se realizó un trabajo de campo analizado desde el punto de vista del paradigma metodológico comunicativo (CREA).
El trabajo de campo se llevó a cabo en tres etapas diferentes: 1) estudio exploratorio; 2) realización de entrevistas y 3) una segunda vuelta de entrevistas, con una actividad final grabada en vídeo digital. Para recoger al información se utilizaron a) un diario de campo; b) una tertulia comunicativa; c) entrevistas en profundidad; d) varias actividades sobre proporciones (tanto en el formato de libro, como en formato informático). La información recogida se analizó teniendo en cuenta dos niveles de análisis: el discurso y el tono del discurso.
El aprendizaje siempre se produce en un entorno social, de manera que también hay que tener en cuenta las relaciones intersubjetivas. La experiencia previa, las creencias, las prenociones o los estereotipos de los que antes hablábamos, son elementos que se han formado socialmente. Pero eso no quiere decir que no intervengan también variables internas. Las mujeres del grupo explican, por ejemplo, la importancia de la repetición en el aprendizaje. También se resalta la importancia de los elementos afectivos en el proceso de aprendizaje. El creerse las cosas que hacen es un ingrediente básico para obtener el éxito. Y, al contrario, cuando no se cree en lo que se está haciendo, el fracaso es prácticamente seguro. Esta apreciación se pone de manifiesto en temas como la vivencia del bloqueo o del éxito.
Las personas utilizan formas de aprendizaje basadas en el diálogo igualitario para aprender el concepto matemático de proporciones. Resuelven las dificultades con las que se van encontrando (sean de la propia naturaleza del problema, porque no lo habían visto antes, y es nuevo para ellas, etc.) mediante el diálogo. Cuando alguien de la clase se sitúa por encima del resto de personas del grupo, aparece entonces un desnivel que no resuelve las dificultades y genera rechazo. En cambio, en un entorno de diálogo igualitario, ocurre todo lo contrario: todas las personas intervienen, y "construyen" las ideas matemáticas conjuntamente. Lo cual, además, les da todo el sentido, porque todas las personas acaban por "apropiarse" dichas ideas, y hacérselas suyas. En esta situación es cuando se produce "aprendizaje".
This dissertation is situated in the context of the Information Society. It provides an analysis of some of the affective and cognitive processes that influence in the development of communicative mathematics skills in the learning process, from the perspective of mathematics teaching. With the aid of the information and communication technologies situations for mathematics are proposed in order to encourage adults to seek mathematical forms to resolve said situations, in the context of dialogic learning.
Learning always takes place in a social surrounding, such that intersubjective relations must also be taken into account. Prior experience, beliefs, presumptions and or stereotypes mentioned earlier are elements that are socially constructed. This does not mean that internal variables do not also intervene. Women from the group explain, for instance, about the importance of repetition in learning. Affective elements in the learning process are also emphasised. Believing in what they are doing is a fundamental ingredient in success. In contrast, when someone does not believe in what they are doing, failure is practically inevitable. This situation is expressed in issues like the experience of a block or success.
People use ways of learning based on egalitarian dialogue to learn the concept of mathematical proportions. They resolve difficulties that they encounter through dialogue. A gap arises when someone in class places themselves above the rest of the people in the group; this does not resolve the difficulties and generates rejection. In contrast, in an environment of egalitarian dialogue the opposite occurs: everyone participates and "constructs" the mathematics ideas together. In addition, this creates meaning for them all because everyone can "have ownership" of these ideas and make them their own. This is the kind of situation where "learning" takes place.
Carrillo, Lara Flor Isabel. "Un estudio de las organizaciones matemáticas del objeto función cuadrática en la enseñanza superior." Master's thesis, Pontificia Universidad Católica del Perú, 2013. http://tesis.pucp.edu.pe/repositorio/handle/123456789/4634.
Full textTesis
Sánchez, Jiménez Encarna. "Las Escuelas Normales y la renovación de la enseñanza de las matemáticas (1909-1936)." Doctoral thesis, Universidad de Murcia, 2015. http://hdl.handle.net/10803/363220.
Full textDuring the first third of the 20th Century, a great many education reforms were planned, projected and implemented in Spain. These innovations had as a reference point international education movements, especially the new school movement. Within this context, innovations in the field of the study of mathematics both in teaching training colleges as well as in primary schools are of special interest. The following research problems are formulated: How did teaching training college professors contribute to the educational renewal process, in terms of teachers' methodological training in mathematics? What were the characteristics of their innovative proposals in mathematics? Which of them are specific to mathematics? What were their proposals for innovation in mathematics education in primary school? The present research focuses on the History of Mathematics Education. Consequently, methods of historical research, and more specifically, those features related to the History of Education, are taken into account. However, mathematical content is also analyzed using theoretical tools developed in Mathematics Teaching. The choice of these tools is linked to the research programme to which we subscribe, the Epistemological Research Programme in Mathematics Teaching, which considers mathematical activity itself as a primary object of study. The Anthopological Theory of Didactics (ATD) is adopted. This theoretical framework focuses on the mathematical and instructional organizations which emerge in the study of mathematics within an institution. The ATD provides valuable research tools for examining the History of Mathematics Education. These tools have so far been underused in the field so that their full potential is still unknown. As a result, further research problems still to be addressed include: Which analysis of the processes of mathematical study developed in the past allows the application of the ATD tools? How do available sources influence this research? What relationship is there between the pedagogical, epistemological and teaching models in mathematics? These questions are broken down into more specific issues which are discussed in different chapters. The analysis of the training of future teachers in both mathematics and the teaching of mathematics involves making reference to disciplinary subjects such as arithmetic or geometry, which form part of Mathematics, and to another subject, Mathematics Methodology or Mathematics Didactics, which at that time, was still in the process of becoming a discipline. These processes take place within the educational system, in confluence or confrontation with other disciplines similarly affected by educational policies and changes in the curriculum and closely related to the professionalization of their teachers. Thus, along with the praxeological analysis, that provides a method for analyzing the institutional practices that allow for the description and study of the conditions of implementation (praxeologies or mathematical and didactic organizations), an ecological analysis considers the setting and the conceptual environment of an object of knowledge, as well as the role of this object in the system it interacts with. The conditions and mutual restrictions between the mathematical organizations studied in institutional teacher training colleges -and primary schools- and the corresponding didactic organizations are analyzed, in order to determine how the influence of the levels of didactic co-determination beyond Discipline or Pedagogy, such as School and the Society, determine the above mentioned study.
Celis, Cueva Mery Socorro. "Estrategias metodológicas para mejorar la capacidad de resolución de problemas en los estudiantes del IV ciclo de educación primaria de la I.E “Ignacio Merino”: plan de acción." Bachelor's thesis, Pontificia Universidad Católica del Perú, 2018. http://tesis.pucp.edu.pe/repositorio/handle/123456789/11230.
Full textTrabajo académico
Diaz, Sandoval Victor Hugo. "Aplicación de los procesos de enseñanza en el área de matemática." Bachelor's thesis, Pontificia Universidad Católica del Perú, 2018. http://tesis.pucp.edu.pe/repositorio/handle/123456789/10367.
Full textTrabajo académico
Roque, Guerrero Rosario Josefina. "Estrategias de resolución de problemas para mejorar las competencias matemáticas: plan de acción." Bachelor's thesis, Pontificia Universidad Católica del Perú, 2018. http://tesis.pucp.edu.pe/repositorio/handle/123456789/10558.
Full textTrabajo académico
Herrera, Soca Katia Lizeth, and Valencia María Arlet Toledo. "Procesos lectores de alto nivel y la resolución de problemas aritméticos en estudiantes del 5°grado de primaria de una Institución educativa privada del Cercado de Lima, 2017." Master's thesis, Pontificia Universidad Católica del Perú, 2019. http://hdl.handle.net/20.500.12404/15796.
Full textOur purpose with the present research was to demonstrate the relationship between the high level reading processes and the resolution of arithmetic problems in 5th grade students from a private school in Cercado de Lima. To reach this objective, a quantitative focus was used, from a co-relation type and a nonexperimental design, to a 100 student population from Innova Schools, located in Cercado de Lima. The reading processes battery evaluation was applied, reviewed PROLECR – syntactic and semantic processes, elaborated by Cuetos, Rodríguez, Ruano y Arribas (2007) and the resolution of arithmetic problems test EVAMAT 5, elaborated by García Vidal, García Ortiz, Gonzales Manjón, Gonzales Cejas, Jiménez Fernández y Jiménez Mesa (2010). The results obtained, confirmed a significant correspondence between the high level reading processes and the resolution of arithmetic problems. Also, when the syntactic and semantic processes were compared to the resolution of arithmetic problems, better results were obtained in the semantic processes.
Tesis