Academic literature on the topic 'Simulation in nanoelectronics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Simulation in nanoelectronics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Simulation in nanoelectronics"

1

Melnyk, Oleksandr, and Viktoriia Kozarevych. "SIMULATION OF PROGRAMMABLE SINGLE-ELECTRON NANOCIRCUITS." Bulletin of the National Technical University "KhPI". Series: Mathematical modeling in engineering and technologies, no. 1 (March 5, 2021): 64–68. http://dx.doi.org/10.20998/2222-0631.2020.01.05.

Full text
Abstract:
The speed and specializations of large-scale integrated circuits always contradict their versatility, which expands their range and causes the rise in price of electronic devices. It is possible to eliminate the contradictions between universality and specialization by developing programmable nanoelectronic devices, the algorithms of which are changed at the request of computer hardware developers, i.e. by creating arithmetic circuits with programmable characteristics. The development of issues of theory and practice of the majority principle is now an urgent problem, since the nanoelectronic
APA, Harvard, Vancouver, ISO, and other styles
2

Fortes, A. B., J. Figueiredo, and M. S. Lundstrom. "Virtual Computing Infrastructures for Nanoelectronics Simulation." Proceedings of the IEEE 93, no. 10 (2005): 1839–47. http://dx.doi.org/10.1109/jproc.2005.853545.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

de Falco, Carlo, and Massimiliano Culpo. "Dynamical iteration schemes for multiscale simulation in nanoelectronics." PAMM 8, no. 1 (2008): 10061–64. http://dx.doi.org/10.1002/pamm.200810061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Culpo, Massimiliano, and Carlo de Falco. "Dynamical iteration schemes for coupled simulation in nanoelectronics." PAMM 8, no. 1 (2008): 10065–68. http://dx.doi.org/10.1002/pamm.200810065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chou, Hung Mu, Shao Ming Yu, Jam Wem Lee, and Yiming Li. "A compact model for electrostatic discharge protection nanoelectronics simulation." International Journal of Nanotechnology 2, no. 3 (2005): 226. http://dx.doi.org/10.1504/ijnt.2005.008061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Levy, J. "Correlated nanoelectronics and the second quantum revolution." APL Materials 10, no. 11 (2022): 110901. http://dx.doi.org/10.1063/5.0111221.

Full text
Abstract:
The growing field of correlated nanoelectronics exists at the intersection of two established fields: correlated oxide electronics and semiconductor nanoelectronics. The development of quantum technologies that exploit quantum coherence and entanglement for the purposes of computation, simulation, and sensing will require complex material properties to be controlled at nanoscale dimensions. Heterostructures and nanostructures formed at the interface between LaAlO3 and SrTiO3 exhibit striking behavior that arises from the ability to program the conductive behavior at extreme nanoscale dimension
APA, Harvard, Vancouver, ISO, and other styles
7

Sangiorgi, Enrico, Asen Asenov, Herbert S. Bennett, et al. "Foreword Special Issue on Simulation and Modeling of Nanoelectronics Devices." IEEE Transactions on Electron Devices 54, no. 9 (2007): 2072–78. http://dx.doi.org/10.1109/ted.2007.905342.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gargini, Paolo A. "Silicon Nanoelectronics and Beyond." Journal of Nanoparticle Research 6, no. 1 (2004): 11–26. http://dx.doi.org/10.1023/b:nano.0000023248.65742.6c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tatarnikov, Denis A., and Aleksey V. Godovykh. "Molecular Dynamic Simulation of Carbon Nanostructures Formation." Advanced Materials Research 1040 (September 2014): 92–96. http://dx.doi.org/10.4028/www.scientific.net/amr.1040.92.

Full text
Abstract:
This paper is devoted to the study of stable structures of various carbon nanomaterials using molecular dynamic simulation, study of their properties and characteristics, as well as search for possible later use in nanoelectronics and nanomechanics. We develop programs for computation of the system of atoms at every step and visualization of that data, also we research of thermodynamic properties and conditions of formation of different carbon nanostructures, try to predict existence of new materials. Nowadays we have two separate programs: one for computation and one for visualization. We con
APA, Harvard, Vancouver, ISO, and other styles
10

Weinbub, Josef, and Roza Kotlyar. "Designing Future Quantum-Based Nanoelectronics Through Modeling and Simulation [Guest Editorial]." IEEE Nanotechnology Magazine 17, no. 4 (2023): 3. http://dx.doi.org/10.1109/mnano.2023.3279710.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Simulation in nanoelectronics"

1

Weston, Joseph. "Numerical methods for time-resolved quantum nanoelectronics." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAY040/document.

Full text
Abstract:
De récents progrès dans la nanoélectronique quantique ont donné lieu à denouvelles expériences avec des sources cohérentes d'électrons unique. Lorsqu'undispositif électronique quantique est manipulé sur une échelle de temps pluscourte que le temps de vol caractéristique d'un électron à travers ledispositif, toute une gamme de possibilités qui sont conceptuellement nouvellesdeviennent possible. Pour traiter de telles situations physiques, des avancéescorrespondantes sont nécessaires dans les techniques de simulation, pour aiderà comprendre, ainsi qu'à concevoir, la prochaine génération d'expéri
APA, Harvard, Vancouver, ISO, and other styles
2

Kudrya, V. G., and D. A. Voronenko. "Designing Nanotechnology Matching Devices." Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35357.

Full text
Abstract:
The work describes the features of simulation of the ultrahigh-frequency electromagnetic interaction, which forms an internal solenoid status of monolithic integrated circuits. As an example, is the study of matching devices, which are made in the form of the band-pass lines. The proposed method of modeling, to determine the dependence of the finite frequency and temporal characteristics of the cascading schemes amplifiers. Thus, the proposed method of modeling physical processes appear not only domestic but also external display spatially distributed nano-and micro-strip technology structures
APA, Harvard, Vancouver, ISO, and other styles
3

Okobiah, Oghenekarho. "Geostatistical Inspired Metamodeling and Optimization of Nanoscale Analog Circuits." Thesis, University of North Texas, 2014. https://digital.library.unt.edu/ark:/67531/metadc500074/.

Full text
Abstract:
The current trend towards miniaturization of modern consumer electronic devices significantly affects their design. The demand for efficient all-in-one appliances leads to smaller, yet more complex and powerful nanoelectronic devices. The increasing complexity in the design of such nanoscale Analog/Mixed-Signal Systems-on-Chip (AMS-SoCs) presents difficult challenges to designers. One promising design method used to mitigate the burden of this design effort is the use of metamodeling (surrogate) modeling techniques. Their use significantly reduces the time for computer simulation and design sp
APA, Harvard, Vancouver, ISO, and other styles
4

Reinke, Charles M. "Design, simulation, and characterization toolset for nano-scale photonic crystal devices." Diss., Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/33932.

Full text
Abstract:
The objective of this research is to present a set of powerful simulation, design, and characterization tools suitable for studying novel nanophotonic devices. The simulation tools include a three-dimensional finite-difference time-domain code adapted for parallel computing that allows for a wide range of simulation conditions and material properties to be studied, as well as a semi-analytical Green's function-based complex mode technique for studying loss in photonic crystal waveguides. The design tools consist of multifunctional photonic crystal-based template that has been simulated with no
APA, Harvard, Vancouver, ISO, and other styles
5

Cao, Jiang. "Transistors à effet tunnel à base de matériaux bidimensionnels." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAT009/document.

Full text
Abstract:
L'isolement du graphène a suscité un grand intérêt vers la recherche d’applications potentielles de ce matériau unique et d'autres matériaux bidimensionnels (2D) pour l'électronique, l'optoélectronique, la spintronique et de nombreux autres domaines. Par rapport au graphène, les dichalcogenides de métaux de transition (TMD) 2D offrent l'avantage d'être des semi-conducteurs, ce qui permettrait de les utiliser pour des circuits logiques. Au cours des dix dernières années, de nombreux développements ont déjà été réalisés dans ce domaine où les opportunités et les défis coexistent. Cette thèse pré
APA, Harvard, Vancouver, ISO, and other styles
6

Rykaczewski, Konrad. "Electron beam induced deposition (EBID) of carbon interface between carbon nanotube interconnect and metal electrode." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/31773.

Full text
Abstract:
Thesis (Ph.D)--Mechanical Engineering, Georgia Institute of Technology, 2010.<br>Committee Chair: Dr. Andrei G. Fedorov; Committee Member: Dr. Azad Naeemi; Committee Member: Dr. Suresh Sitaraman; Committee Member: Dr. Vladimir V. Tsukruk; Committee Member: Dr. Yogendra Joshi. Part of the SMARTech Electronic Thesis and Dissertation Collection.
APA, Harvard, Vancouver, ISO, and other styles
7

Lee, Jae Woo. "Electrical characterization and modeling of low dimensional nanostructure FET." Thesis, Grenoble, 2011. http://www.theses.fr/2011GRENT070/document.

Full text
Abstract:
At the beginning of this thesis, basic and advanced device fabrication process which I haveexperienced during study such as top-down and bottom-up approach for the nanoscale devicefabrication technique have been described. Especially, lithography technology has beenfocused because it is base of the modern device fabrication. For the advanced device structure,etching technique has been investigated in detail.The characterization of FET has been introduced. For the practical consideration in theadvanced FET, several parameter extraction techniques have been introduced such as Yfunction,split C-V
APA, Harvard, Vancouver, ISO, and other styles
8

Maassen, Jesse. "First principles simulations of nanoelectronic devices." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=106463.

Full text
Abstract:
As the miniaturization of devices begins to reveal the atomic nature of materials, where chemical bonding and quantum effects are important, one must resort to a parameter-free theory for predictions. This thesis theoretically investigates the quantum transport properties of nanoelectronic devices using atomistic first principles. Our theoretical formalism employs density functional theory (DFT) in combination with Keldysh nonequilibrium Green's functions (NEGF). Self-consistently solving the DFT Hamiltonian with the NEGF charge density provides a way to simulate nonequilibrium systems without
APA, Harvard, Vancouver, ISO, and other styles
9

Huang, Jun, and 黃俊. "Efficiency enhancement for nanoelectronic transport simulations." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hdl.handle.net/10722/196031.

Full text
Abstract:
Continual technology innovations make it possible to fabricate electronic devices on the order of 10nm. In this nanoscale regime, quantum physics becomes critically important, like energy quantization effects of the narrow channel and the leakage currents due to tunneling. It has also been utilized to build novel devices, such as the band-to-band tunneling field-effect transistors (FETs). Therefore, it presages accurate quantum transport simulations, which not only allow quantitative understanding of the device performances but also provide physical insight and guidelines for device optimizati
APA, Harvard, Vancouver, ISO, and other styles
10

Zörgiebel, Felix. "Silicon Nanowires for Biosensor Applications." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-230675.

Full text
Abstract:
Nanostrukturen haben in den letzten Jahrzehnten durch konsequente Förderung wie der im Jahr 2000 gestarteten National Nanotechnology Initiative der USA oder des deutschen Pendants Aktionsplan Nanotechnologie erhebliches Aufsehen, nicht nur in der Wissenschaft, sondern auch in der technischen und wirtschaftlichen Umsetzung erfahren. In Kombination mit biologischen Systemen, deren Funktionalität sich auf der Größenordnung von Nanometern abspielt, finden nanotechnologische Entwicklungen auf dem Gebiet der Medizin ein großes technisches Anwendungsgebiet. Diese Arbeit widmet sich der Untersuchung u
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Simulation in nanoelectronics"

1

Günther, Michael, ed. Coupled Multiscale Simulation and Optimization in Nanoelectronics. Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46672-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Knoch, Joachim. Nanoelectronics: Device Physics, Fabrication, Simulation. de Gruyter GmbH, Walter, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Knoch, Joachim. Nanoelectronics: Device Physics, Fabrication, Simulation. de Gruyter GmbH, Walter, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Günther, Michael. Coupled Multiscale Simulation and Optimization in Nanoelectronics. Springer London, Limited, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Günther, Michael. Coupled Multiscale Simulation and Optimization in Nanoelectronics. Springer, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Günther, Michael. Coupled Multiscale Simulation and Optimization in Nanoelectronics. Springer, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Khursheed, Afreen, and Kavita Khare. Nano Interconnects: Device Physics, Modeling and Simulation. CRC Press LLC, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Khursheed, Afreen, and Kavita Khare. Nano Interconnects: Device Physics, Modeling and Simulation. Taylor & Francis Group, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nano Interconnects: Device Physics, Modeling and Simulation. Taylor & Francis Group, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Atomistic Simulation of Quantum Transport in Nanoelectronic Devices. World Scientific Publishing Co Pte Ltd, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Simulation in nanoelectronics"

1

Denk, G. "Circuit Simulation for Nanoelectronics." In Scientific Computing in Electrical Engineering. Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/978-3-540-32862-9_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Thoma, R., H. J. Peifer, W. L. Engl, W. Quade, R. Brunetti, and C. Jacoboni. "Impact Ionization for Electrons in Si with Monte Carlo Simulation." In Granular Nanoelectronics. Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-3689-9_39.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yamada, T., A. M. Kriman, and D. K. Ferry. "Monte Carlo Simulation of Lateral Surface Superlattices in a Magnetic Field." In Granular Nanoelectronics. Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-3689-9_36.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dollfus, Philippe, and François Triozon. "Introduction: Nanoelectronics, Quantum Mechanics, and Solid State Physics." In Simulation of Transport in Nanodevices. John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781118761793.ch1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pala, Marco. "Quantum Simulation of Silicon-Nanowire FETs." In Semiconductor-On-Insulator Materials for Nanoelectronics Applications. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-15868-1_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kotabagi, Sujata Sanjay, and P. Subbanna Bhat. "Design and Simulation of Fourth-Order Delta-Sigma Modulator-MASH Architecture." In Nanoelectronics, Circuits and Communication Systems. Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7486-3_54.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Raghunath, B. H., H. S. Aravind, N. Praveen, P. Dinesha, and T. C. Manjunath. "Mathematical Modeling and Simulation of a Nanorobot Using Nano-hive Tool for Medical Applications." In Nanoelectronics, Circuits and Communication Systems. Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7486-3_31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ahmed, Iftikhar, Eng Huat Khoo, and Erping Li. "Time Domain Modeling and Simulation from Nanoelectronics to Nanophotonics." In Computational Electromagnetics—Retrospective and Outlook. Springer Singapore, 2014. http://dx.doi.org/10.1007/978-981-287-095-7_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Murali Krishna, K., and M. Ganesh Madhan. "Numerical Simulation of High-Temperature VCSEL Operation and Its Impact on Digital Optical Link Performance." In Nanoelectronics, Circuits and Communication Systems. Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0776-8_31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Nguyen, Huu-Nha, Damien Querlioz, Arnaud Bournel, Sylvie Retailleau, and Philippe Dollfus. "Ohmic and Schottky Contact CNTFET: Transport Properties and Device Performance Using Semi-classical and Quantum Particle Simulation." In Semiconductor-On-Insulator Materials for Nanoelectronics Applications. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-15868-1_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Simulation in nanoelectronics"

1

Xu, Jinghan, Zheng Zhou, Fei Liu, and Xiaoyan Liu. "Simulation of Trap-Induced Noise Characteristics in 3-nm Complementary FET." In 2024 IEEE Silicon Nanoelectronics Workshop (SNW). IEEE, 2024. http://dx.doi.org/10.1109/snw63608.2024.10639219.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Liang, Cheng-En, and Ying-Tsan Tang. "The Simulation of Double Germanium Quantum Dots in a Ring-Shaped Quantum Structure." In 2024 IEEE Silicon Nanoelectronics Workshop (SNW). IEEE, 2024. http://dx.doi.org/10.1109/snw63608.2024.10639212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhong, Junhao, Shuai Tang, Mingkai Gou, et al. "A Nano-Focus X-Ray Source with Nanoneedle Cold Cathode by Simulation." In 2024 37th International Vacuum Nanoelectronics Conference (IVNC). IEEE, 2024. http://dx.doi.org/10.1109/ivnc63480.2024.10652306.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Soud, Ammar Al, Ahmad M. D. Assa'd Jaber, Vladimir Holcman, Petr Sedlak, and Dinara Sobola. "Simulation of the Electrical Properties of a Graphene Monolayer Field Effect Transistor." In 2024 37th International Vacuum Nanoelectronics Conference (IVNC). IEEE, 2024. http://dx.doi.org/10.1109/ivnc63480.2024.10652423.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Morris, James E. "Nanotechnology laboratory and nanoelectronics simulation courses." In 2015 IEEE Nanotechnology Materials and Devices Conference (NMDC). IEEE, 2015. http://dx.doi.org/10.1109/nmdc.2015.7439275.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

"Session 03-A nanoelectronics and interfaces." In 2010 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD 2010). IEEE, 2010. http://dx.doi.org/10.1109/sispad.2010.5604582.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shakhnov, Vadim A., Lyudmila A. Zinchenko, and Elena V. Rezchikova. "Modeling and simulation of nanoelectronics devices in cognitive nanoinformatics." In The International Conference on Micro- and Nano-Electronics 2014, edited by Alexander A. Orlikovsky. SPIE, 2014. http://dx.doi.org/10.1117/12.2179168.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Basaran, Cemal, and Minghui Lin. "Electromigration Damage Mechanics of Interconnects." In ASME 2009 InterPACK Conference collocated with the ASME 2009 Summer Heat Transfer Conference and the ASME 2009 3rd International Conference on Energy Sustainability. ASMEDC, 2009. http://dx.doi.org/10.1115/interpack2009-89006.

Full text
Abstract:
Current density levels are expected to increase by orders of magnitude in nanoelectronics. Electromigration which occur under high current density is the major concern for the nanoelectronics industry. Using a general purpose computational model, which is capable of simulating coupled electromigration and thermo-mechanical stress evolution, several dual damascene copper interconnect structures have been investigated for electromigration damage. Different diffusion boundary conditions including blocking and non blocking boundary conditions, current crowding effects, interface diffusion effects
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Hsin-Ping, Kun-Tong Tsai, Kun-Yu Lai, Yi-Ruei Lin, Yuh-Lin Wang, and Jr-Hau He. "Simulation and Experiment of Light Trapping Ability of Periodic Si Nanowires." In Nanophotonics, Nanoelectronics and Nanosensor. OSA, 2013. http://dx.doi.org/10.1364/n3.2013.nsa3a.51.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Barinov, A. D., A. I. Popov, and A. A. Makarov. "Property control methods of diamond-like silicon-carbon films for micro- and nanoelectronics." In THE EUROPEAN MODELING AND SIMULATION SYMPOSIUM. CAL-TEK srl, 2019. http://dx.doi.org/10.46354/i3m.2019.emss.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Simulation in nanoelectronics"

1

Waitz, Anthony, Jerzy Bernholc, and Kurt Stokbro. Tools for Modeling & Simulation of Molecular and Nanoelectronics Devices. Defense Technical Information Center, 2012. http://dx.doi.org/10.21236/ada577319.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pasupuleti, Murali Krishna. Neuromorphic Nanotech: 2D Materials for Energy-Efficient Edge Computing. National Education Services, 2025. https://doi.org/10.62311/nesx/rr325.

Full text
Abstract:
Abstract The demand for energy-efficient, real-time computing is driving the evolution of neuromorphic computing and edge AI systems. Traditional silicon-based processors struggle with power inefficiencies, memory bottlenecks, and scalability limitations, making them unsuitable for next-generation low-power AI applications. This research report explores how 2D materials, such as graphene, transition metal dichalcogenides (TMDs), black phosphorus, and MXenes, are enabling the development of neuromorphic architectures that mimic biological neural networks for high-speed, ultra-low-power computat
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!