Academic literature on the topic 'Solid state fermentation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Solid state fermentation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Solid state fermentation"
Pandey, Ashok. "Solid-state fermentation." Biochemical Engineering Journal 13, no. 2-3 (March 2003): 81–84. http://dx.doi.org/10.1016/s1369-703x(02)00121-3.
Full textWang, RuoHang. "Solid State Fermentation." Chemical Engineering Journal 66, no. 1 (January 1997): 83. http://dx.doi.org/10.1016/s1385-8947(97)89930-5.
Full textHobson, P. N. "Solid state fermentation." Bioresource Technology 52, no. 3 (January 1995): 288. http://dx.doi.org/10.1016/0960-8524(95)90015-2.
Full textWu, Pengyu, Qiuyan Zhu, Rui Yang, Yuxia Mei, Zhenmin Chen, and Yunxiang Liang. "Differences in Acid Stress Response of Lacticaseibacillus paracasei Zhang Cultured from Solid-State Fermentation and Liquid-State Fermentation." Microorganisms 9, no. 9 (September 14, 2021): 1951. http://dx.doi.org/10.3390/microorganisms9091951.
Full textKarki, Dhan Bahadur, and Ganga Prasad Kharel. "Solid Versus Semi-solid Fermentation of Finger Millet (Eleusine coracana L.)." Journal of Food Science and Technology Nepal 6 (June 29, 2013): 31–35. http://dx.doi.org/10.3126/jfstn.v6i0.8257.
Full textWu, Pengyu, Jing An, Liang Chen, Qiuyan Zhu, Yingjun Li, Yuxia Mei, Zhenmin Chen, and Yunxiang Liang. "Differential Analysis of Stress Tolerance and Transcriptome of Probiotic Lacticaseibacillus casei Zhang Produced from Solid-State (SSF-SW) and Liquid-State (LSF-MRS) Fermentations." Microorganisms 8, no. 11 (October 26, 2020): 1656. http://dx.doi.org/10.3390/microorganisms8111656.
Full textHesseltine, C. W. "Solid state fermentation—An overview." International Biodeterioration 23, no. 2 (January 1987): 79–89. http://dx.doi.org/10.1016/0265-3036(87)90030-3.
Full textViéitez, E. R., J. Mosquera, and S. Ghosh. "Kinetics of accelerated solid-state fermentation of organic-rich municipal solid waste." Water Science and Technology 41, no. 3 (February 1, 2000): 231–38. http://dx.doi.org/10.2166/wst.2000.0076.
Full textGeetha, K. N., K. Jeyaprakash, and Y. P. Nagaraja. "Isolation, screening of Aspergillus flavus and its production parameters for á- amylase under solid state fermentation." Journal of Applied and Natural Science 3, no. 2 (December 1, 2011): 268–73. http://dx.doi.org/10.31018/jans.v3i2.194.
Full textM. Gasparotto, Juliana, Raquel C. Kuhn, Edson L. Foletto, Rodrigo J.S. Jacques, Jerson V. C. Guedes, Sergio L. Jahn, and Marcio A. Mazutti. "Technological Prospection on Solid-State Fermentation." Recent Patents on Engineering 6, no. 3 (December 3, 2012): 207–16. http://dx.doi.org/10.2174/187221212804583259.
Full textDissertations / Theses on the topic "Solid state fermentation"
Abdul, Manan Musaalbakri. "Design aspects of solid state fermentation." Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/design-aspects-of-solid-state-fermentation(d64ea506-85ee-424f-9bca-531488e3e3c7).html.
Full textSilva, Ellen Mae. "A gas-solid spouted bed bioreactor for solid state fermentation /." The Ohio State University, 1997. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487945320759412.
Full textRobinson, Tim. "Solid state fermentation of dye-adsorbed agricultural residues." Thesis, University of Ulster, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.274061.
Full textLyons, Mark Pearse. "Optimisation of solid-state fermentation for enzyme production." Thesis, Heriot-Watt University, 2007. http://hdl.handle.net/10399/2030.
Full textBennett, Patrick M. "Solid State Fermentation in a Spouted Bed Reactor and Modelling Thereof." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1384774243.
Full textMahanama, Raja Manthreegedara Hasitha Rukmal. "Solid State Fermentation of Bacillus subtilis to Produce Menaquinone7 (Vitamin K2)." Thesis, The University of Sydney, 2013. http://hdl.handle.net/2123/9360.
Full textZhuang, Jun. "ECONOMIC ANALYSIS OF CELLULASE PRODUCTION BY CLOSTRIDIUM THERMOCELLUM IN SOLID STATE AND SUBMERGED FERMENTATION." UKnowledge, 2004. http://uknowledge.uky.edu/gradschool_theses/170.
Full textJiménez, Peñalver Pedro. "Sophorolipids production by solid-state fermentation: from lab-scale to pilot plant." Doctoral thesis, Universitat Autònoma de Barcelona, 2017. http://hdl.handle.net/10803/458652.
Full textEn este trabajo se propone una tecnología alternativa para producir soforolípidos (SLs), un tipo de biosurfactante, presentados como alternativa a los surfactantes producidos químicamente debido a su mayor eficiencia y mejor perfil medioambiental. En este trabajo se han explorado dos estrategias para mejorar la relación coste-eficiencia de los SLs respecto a los surfactantes producidos químicamente, que es lo que determina su viabilidad económica. Ambas estrategias están basadas en la producción de SLs mediante la fermentación en estado sólido (FES) de Starmerella bombicola. La primera estrategia consistió en el uso de un residuo de winterización (RW) con el fin de disminuir el precio de los sustratos. Se utilizó melaza de azúcar como co-sustrato y paja de trigo como soporte inerte. El proceso fue optimizado en base a la ratio de sustratos, la velocidad de aireación y el tamaño del inóculo a escala de 100-g obteniendo un rendimiento de 0.261 g de SLs por g de sustrato a día 10. El proceso fue escalado satisfactoriamente a un biorreactor de lecho fijo de 40-L, pero se observaron problemas asociados con la eliminación del calor durante el escalado a un biorreactor de 100-L. Los SLs producidos a partir del RW fueron caracterizados durante una estancia en el Rensselaer Polytechnic Institute (RPI) en NY, EEUU. La segunda estrategia consistió en el uso de ácido esteárico (C18:0) para obtener SLs con una estructura específica que mejore las propiedades fisicoquímicas de la mezcla natural de SLs y, por tanto, su eficiencia. Se utilizó melaza de azúcar como co-sustrato y espuma de poliuretano como soporte inerte. Se evaluó el efecto de la densidad de la espuma de poliuretano y la capacidad de retención hídrica y el proceso fue optimizado en base a la ratio de sustratos e inóculo obteniendo un rendimiento final de 0.211 g de SLs por g de sustrato. Los SLs producidos presentaron contenidos elevados de SLs diacetilados C18:0 acídico y lactónico. Se observaron correlaciones significativas entre el rendimiento de SLs y el oxígeno consumido (COA). Esto sugiere que el COA puede ser usado como medida indirecta de la producción de SLs para la monitorización on-line de procesos de FES. Esta tesis representa el comienzo de una nueva línea de investigación centrada en la producción de SLs por FES en el Grupo de Investigación en Compostaje (GICOM) del Departamento de Ingeniería Química, Biológica y Ambiental de la Universitat Autònoma de Barcelona.
This work proposes a potential alternative approach to produce sophorolipids (SLs), a type of biosurfactant, which are presented as an alternative to chemically-produced surfactants due to their higher efficiency and better environmental compatibility. Two strategies have been performed in this work to increase their cost-performance relative to petroleum based surfactants, which determines their commercial viability. Both are based in the production of SLs by the solid-state fermentation (SSF) of solid hydrophobic substrates by the yeast Starmerella bombicola. The first strategy was to use winterization oil cake (WOC), an oil cake that comes from the oil refining industry, to decrease the price of the substrates and, therefore, the final production costs of SLs. Sugar-beet molasses was used as co-substrate and wheat straw was chosen as inert support. The process was optimized in terms of substrates ratio, aeration rate and inoculum size at 0.5-L scale to obtain a yield of 0.261 g of SLs per g of substrate at day 10. The optimized process was successfully scale-up to a 40-L packed-bed bioreactor but problems associated with heat removal were found during the scale-up to a 100-L intermittently-mixed bioreactor. The chemical structure and interfacial properties of the SL natural mixture produced from the WOC were studied during a research stay at the Rensselaer Polytechnic Institute (RPI) in NY, USA. The second strategy consisted in the use of stearic acid (C18:0) to obtain SLs with a specific structure that improves the physicochemical properties of the SL natural mixture and, therefore, their performance. Sugar-beet molasses was used as co-substrate and polyurethane foam (PUF) functioned as inert support. The effect of PUF density and water holding capacity was assessed and the process was optimized in terms of substrate and inoculum ratio to obtain a final yield of 0.211 g of SLs per g of substrate. SLs produced herein had high contents of diacetylated acidic and lactonic C18:0 SLs. There were significant correlations between the SL yield and the oxygen consumed (COC). This suggests that the respiration parameter COC, can be used as an indirect measurement of the production of SLs for the on-line monitoring of SSF processes. This thesis represents the beginning of a new research line focused on the production of SLs by SSF in the Composting Research Group (GICOM) at the Department of Chemical, Biological and Environmental Engineering of the Universitat Autònoma de Barcelona.
Nair, Vipinachandran. "Reduction of phytic acid content in canola meal by solid state fermentation." Thesis, University of Ottawa (Canada), 1990. http://hdl.handle.net/10393/5919.
Full textLever, Mitchell. "Cellulose to ethanol conversion with on-site cellulase production using solid-state fermentation." Thesis, Lever, Mitchell (2009) Cellulose to ethanol conversion with on-site cellulase production using solid-state fermentation. PhD thesis, Murdoch University, 2009. https://researchrepository.murdoch.edu.au/id/eprint/32795/.
Full textBooks on the topic "Solid state fermentation"
Steudler, Susanne, Anett Werner, and Jay J. Cheng, eds. Solid State Fermentation. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23675-5.
Full textAshok, Pandey, Regional Research Laboratory (Trivandrum, India), and Specialist Group Meeting & Symposium on Solid State Fermentation (1994 : Trivandrum, India), eds. Solid-state fermentation. New Delhi: Wiley Eastern, 1994.
Find full textMitchell, David A., Marin Berovič, and Nadia Krieger, eds. Solid-State Fermentation Bioreactors. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-31286-2.
Full textChen, Hongzhang. Modern Solid State Fermentation. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6043-1.
Full textRoussos, Sevastianos, B. K. Lonsane, Maurice Raimbault, and Gustavo Viniegra-Gonzalez, eds. Advances in Solid State Fermentation. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-017-0661-2.
Full textAshok, Pandey, Soccol Carlos Ricardo, and Larroche Christian, eds. Current developments in solid-state fermentation. New Delhi ; New York: Springer/Asiatech Publishers, 2007.
Find full textPandey, Ashok, Carlos Ricardo Soccol, and Christian Larroche, eds. Current Developments in Solid-state Fermentation. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-75213-6.
Full textNigam, Poonam Singh. Microbial biotechnology exploiting solid state fermentation. New York: Kluwer Academic/Plenum Publishers, 2003.
Find full textInternational Symposium on Solid State Fermentation (2nd 1995 Montpellier, France). Advances in solid state fermentation: Proceedings of the 2nd International Symposium on Solid State Fermentation, FMS-95, Montpellier, France. Dordrecht: Kluwer Academic Publishers, 1997.
Find full textInternational Symposium on Solid State Fermentation (2nd 1995 Montpellier, France). Advances in solid state fermentation: Proceedings of the 2nd International Symposium on Solid State Fermentation, FMS-95, Montpellier, France. Dordrecht: Kluwer Academic Publishers, 1997.
Find full textBook chapters on the topic "Solid state fermentation"
Glassey, Jarka, and Alan C. Ward. "Solid State Fermentation." In Diversity, Dynamics and Functional Role of Actinomycetes on European Smear Ripened Cheeses, 217–25. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10464-5_10.
Full textSinghania, Reeta Rani, Anil Kumar Patel, Leya Thomas, and Ashok Pandey. "Solid-State Fermentation." In Industrial Biotechnology, 187–204. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527807833.ch6.
Full textSinghania, Reeta Rani, Anil Kumar Patel, Lalitha Devi Gottumukkala, Kuniparambil Rajasree, Carlos Ricardo Soccol, and Ashok Pandey. "Solid-State Fermentation." In Fermentation Microbiology and Biotechnology, Fourth Edition, 243–54. Fourth edition. | Boca Raton : Taylor & Francis, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/9780429506987-13.
Full textWolf, K. H. "Solid-State-Fermentation." In Aufgaben zur Bioreaktionstechnik, 161–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-78917-5_16.
Full textSteudler, Susanne, Anett Werner, and Thomas Walther. "It Is the Mix that Matters: Substrate-Specific Enzyme Production from Filamentous Fungi and Bacteria Through Solid-State Fermentation." In Solid State Fermentation, 51–81. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/10_2019_85.
Full textZhou, Haoqin, and Zhiyou Wen. "Solid-State Anaerobic Digestion for Waste Management and Biogas Production." In Solid State Fermentation, 147–68. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/10_2019_86.
Full textOrban, Axel, Marco A. Fraatz, and Martin Rühl. "Aroma Profile Analyses of Filamentous Fungi Cultivated on Solid Substrates." In Solid State Fermentation, 85–107. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/10_2019_87.
Full textKrieger, Nadia, Glauco Silva Dias, Robson Carlos Alnoch, and David Alexander Mitchell. "Fermented Solids and Their Application in the Production of Organic Compounds of Biotechnological Interest." In Solid State Fermentation, 125–46. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/10_2019_88.
Full textBerovic, Marin. "Cultivation of Medicinal Mushroom Biomass by Solid-State Bioprocessing in Bioreactors." In Solid State Fermentation, 3–25. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/10_2019_89.
Full textMitchell, David Alexander, Luana Oliveira Pitol, Alessandra Biz, Anelize Terezinha Jung Finkler, Luiz Fernando de Lima Luz, and Nadia Krieger. "Design and Operation of a Pilot-Scale Packed-Bed Bioreactor for the Production of Enzymes by Solid-State Fermentation." In Solid State Fermentation, 27–50. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/10_2019_90.
Full textConference papers on the topic "Solid state fermentation"
Ong, L. G. A., H. Y. Sim, and Y. S. Yong. "Biosynthesis of schizophyllan via solid state fermentation." In GREEN DESIGN AND MANUFACTURE: ADVANCED AND EMERGING APPLICATIONS: Proceedings of the 4th International Conference on Green Design and Manufacture 2018. Author(s), 2018. http://dx.doi.org/10.1063/1.5066860.
Full textSILVEIRA, C. L. da, M. A. MAZUTTI, and N. P. G. SALAU. "SOLID-STATE FERMENTATION MODEL FOR A PACKED-BED BIOREACTOR." In XX Congresso Brasileiro de Engenharia Química. São Paulo: Editora Edgard Blücher, 2015. http://dx.doi.org/10.5151/chemeng-cobeq2014-1963-16649-161342.
Full textSilveira, Christian, Nina Salau, and Marcio Mazutti. "DISTRIBUTED PARAMETER MODEL: A SOLID-STATE FERMENTATION PROCESS CASE STUDY." In Simpósio Nacional de Bioprocessos e Simpósio de Hidrólise Enzimática de Biomassa. Campinas - SP, Brazil: Galoá, 2015. http://dx.doi.org/10.17648/sinaferm-2015-33530.
Full textAlhomodi, Ahmad, William Gibbons, and Bishnu Karki. "Variation in Cellulase Production During Solid and Submerged State Fermentation of Raw and Processed Canola Meal by Aureobasidium Pullulans, Neurospora Crassa, and Trichoderma Reesei." In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/mrzb5147.
Full textRahman, Khadijah Hanim Abdul, Ain Nadira Salleh, and Ainihayati Abdul Rahim. "Production of fermentable sugars from cocopeat through fungal solid-state fermentation." In INTERNATIONAL CONFERENCE ON TRENDS IN CHEMICAL ENGINEERING 2021 (ICoTRiCE2021). AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0113796.
Full textCANABARRO, N. I., C. ALESSIO, J. F. SOARES, J. V. S. CORRÊA, N. SUSIN, W. PRIAMO, and M. A. MAZUTTI. "OPTIMIZATION OF SOLID-LIQUID EXTRACTION OF ETHANOL OBTAINED BY SOLID-STATE FERMENTATION OF SURGARCANE BAGASSE." In XX Congresso Brasileiro de Engenharia Química. São Paulo: Editora Edgard Blücher, 2015. http://dx.doi.org/10.5151/chemeng-cobeq2014-2013-16406-175259.
Full textHermansyah, Heri, Mohammad Iqbal Andikoputro, and Afrah Alatas. "Production of lipase enzyme from Rhizopus oryzae by solid state fermentation and submerged fermentation using wheat bran as substrate." In THE 11TH REGIONAL CONFERENCE ON CHEMICAL ENGINEERING (RCChE 2018). Author(s), 2019. http://dx.doi.org/10.1063/1.5094991.
Full textXu, Zhaohui, Pooja Yadav, Zhizhou Zhang, Sankardas Roy, and Huimin Zhang. "Quantification of microbial species in solid state fermentation samples using signature genomic sequences." In 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2017. http://dx.doi.org/10.1109/bibm.2017.8217781.
Full textHaryati, T., A. P. Sinurat, T. Purwadaria, and K. Komarudin. "Mannanase production by Eupenicillium javanicum BS4 through solid state fermentation using rotary drum bioreactor." In PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE OF ANIMAL SCIENCE AND TECHNOLOGY (ICAST 2021). AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0144590.
Full textAlhomodi, Ahmad, andrea zavadil, Mark Berhow, bishnu karki, and William Gibbons. "Daily Development of Nutritional Composition of Canola Sprouts Followed by Solid-state Fungal Fermentation." In Virtual 2021 AOCS Annual Meeting & Expo. American Oil Chemists’ Society (AOCS), 2021. http://dx.doi.org/10.21748/am21.375.
Full textReports on the topic "Solid state fermentation"
Mejía, Cindy, Johana Sanabria, Ginna Quiroga, Erika Grijalba, and Martha Goméz. Effect of substrate composition and drying process on Metarhizium rileyi Nm017’s conidia quality for control of Helicoverpa zea. Corporación colombiana de investigación agropecuaria - AGROSAVIA, 2019. http://dx.doi.org/10.21930/agrosavia.poster.2019.13.
Full textBanin, Amos, Joseph Stucki, and Joel Kostka. Redox Processes in Soils Irrigated with Reclaimed Sewage Effluents: Field Cycles and Basic Mechanism. United States Department of Agriculture, July 2004. http://dx.doi.org/10.32747/2004.7695870.bard.
Full text