Добірка наукової літератури з теми "Semiconductor II-VI"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Semiconductor II-VI".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Semiconductor II-VI":

1

Gunshor, Robert L., and Arto V. Nurmikko. "II-VI Blue-Green Laser Diodes: A Frontier of Materials Research." MRS Bulletin 20, no. 7 (July 1995): 15–19. http://dx.doi.org/10.1557/s088376940003712x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The current interest in the wide bandgap II-VI semiconductor compounds can be traced back to the initial developments in semiconductor optoelectronic device physics that occurred in the early 1960s. The II-VI semiconductors were the object of intense research in both industrial and university laboratories for many years. The motivation for their exploration was the expectation that, possessing direct bandgaps from infrared to ultraviolet, the wide bandgap II-VI compound semiconductors could be the basis for a variety of efficient light-emitting devices spanning the entire range of the visible spectrum.During the past thirty years or so, development of the narrower gap III-V compound semiconductors, such as gallium arsenide and related III-V alloys, has progressed quite rapidly. A striking example of the current maturity reached by the III-V semiconductor materials is the infrared semiconductor laser that provides the optical source for fiber communication links and compact-disk players. Despite the fact that the direct bandgap II-VI semiconductors offered the most promise for realizing diode lasers and efficient light-emitting-diode (LED) displays over the green and blue portions of the visible spectrum, major obstacles soon emerged with these materials, broadly defined in terms of the structural and electronic quality of the material. As a result of these persistent problems, by the late 1970s the II-VI semiconductors were largely relegated to academic research among a small community of workers, primarily in university research laboratories.
2

Dietl, Tomasz, and Hideo Ohno. "Ferromagnetic III–V and II–VI Semiconductors." MRS Bulletin 28, no. 10 (October 2003): 714–19. http://dx.doi.org/10.1557/mrs2003.211.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractRecent years have witnessed extensive research aimed at developing functional, tetrahedrally coordinated ferromagnetic semiconductors that could combine the resources of semiconductor quantum structures and ferromagnetic materials systems and thus lay the foundation for semiconductor spintronics. Spin-injection capabilities and tunability of magnetization by light and electric field in Mn-based III–V and II–VI diluted magnetic semiconductors are examples of noteworthy accomplishments. This article reviews the present understanding of carrier-controlled ferromagnetism in these compounds with a focus on mechanisms determining Curie temperatures and accounting for magnetic anisotropy and spin stiffness as a function of carrier density, strain, and confinement. Materials issues encountered in the search for semiconductors with a Curie point above room temperature are addressed, emphasizing the question of solubility limits and self-compensation that can lead to precipitates and point defects. Prospects associated with compounds containing magnetic ions other than Mn are presented.
3

Chandra, B. P., V. K. Chandra, and Piyush Jha. "Luminescence of II-VI Semiconductor Nanoparticles." Solid State Phenomena 222 (November 2014): 1–65. http://dx.doi.org/10.4028/www.scientific.net/ssp.222.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Nanoparticle or an ultrafine particle is a small solid whose physical dimension lies between 1 to 100 nanometers. Nanotechnology is the coming revolution in molecular engineering, and therefore, it is curiosity-driven and promising area of technology. The field of nanoscience and nanotechnology is interdisciplinary in nature and being studied by physicists, chemists, material scientists, biologists, engineers, computer scientists, etc. Research in the field of nanoparticles has been triggered by the recent availability of revolutionary instruments and approaches that allow the investigation of material properties with a resolution close to the atomic level. Strongly connected to such technological advances are the pioneering studies that have revealed new physical properties of matter at a level intermediate between atomic/molecular and bulk. Quantum confinement effect modifies the electronic structure of nanoparticles when their sizes become comparable to that of their Bohr excitonic radius. When the particle radius falls below the excitonic Bohr radius, the band gap energy is widened, leading to a blue shift in the band gap emission spectra, etc. On the other hand, the surface states play a more important role in the nanoparticles, due to their large surface-to-volume ratio with a decrease in particle size (surface effects). From the last few years, nanoparticles have been a common material for the development of new cutting-edge applications in communications, energy storage, sensing, data storage, optics, transmission, environmental protection, cosmetics, biology, and medicine due to their important optical, electrical, and magnetic properties.
4

SAPRA, SAMEER, RANJANI VISWANATHA, and D. D. SARMA. "ELECTRONIC STRUCTURE OF SEMICONDUCTOR NANOCRYSTALS: AN ACCURATE TIGHT-BINDING DESCRIPTION." International Journal of Nanoscience 04, no. 05n06 (October 2005): 893–99. http://dx.doi.org/10.1142/s0219581x05003851.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We report a quantitatively accurate description of the electronic structure of semiconductor nanocrystals using the sp3d5 orbital basis with the nearest neighbor and the next nearest neighbor interactions. The use of this model for II–VI and III–V semiconductors is reviewed in article. The excellent agreement of the theoretical predictions with the experimental results establishes the feasibility of using this model for semiconductor nanocrystals.
5

Fujita, Shizuo, and Shigeo Fujita. "Photoassisted growth of II–VI semiconductor films." Applied Surface Science 86, no. 1-4 (February 1995): 431–36. http://dx.doi.org/10.1016/0169-4332(94)00454-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wörz, M., M. Hampel, R. Flierl, and W. Gebhardt. "Photoelectron Spectroscopy of II-VI Semiconductor Heterostructures." Acta Physica Polonica A 90, no. 5 (November 1996): 1113–17. http://dx.doi.org/10.12693/aphyspola.90.1113.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Cibert, J., D. Ferrand, S. Tatarenko, A. Wasiela, P. Kossacki, and T. Dietl. "Ferromagnetism in II-VI Based Semiconductor Structures." Acta Physica Polonica A 100, no. 2 (August 2001): 227–36. http://dx.doi.org/10.12693/aphyspola.100.227.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Cibert, J., D. Ferrand, H. Boukari, S. Tatarenko, A. Wasiela, P. Kossacki, and T. Dietl. "Ferromagnetism in II–VI-based semiconductor structures." Physica E: Low-dimensional Systems and Nanostructures 13, no. 2-4 (March 2002): 489–94. http://dx.doi.org/10.1016/s1386-9477(02)00177-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kumar, Sandeep, and Thomas Nann. "Shape Control of II–VI Semiconductor Nanomaterials." Small 2, no. 3 (March 2006): 316–29. http://dx.doi.org/10.1002/smll.200500357.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Cibert, J., D. Ferrand, H. Boukari, S. Tatarenko, A. Wasiela, P. Kossacki, and T. Dietl. "Ferromagnetism in II-VI-Based Semiconductor Structures." ChemInform 34, no. 1 (January 7, 2003): no. http://dx.doi.org/10.1002/chin.200301228.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Semiconductor II-VI":

1

Graham, Timothy Carl Maxwell. "Spectroscopy of II-VI semiconductor quantum dots." Thesis, Heriot-Watt University, 2006. http://hdl.handle.net/10399/103.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Claybourn, M. "Transient spectroscopy of II-VI semiconductors." Thesis, Durham University, 1985. http://etheses.dur.ac.uk/9298/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
DLTS, ODLTS and DLOS have been used to characterise the main deep level trapping centres in some II-VI semiconductors; these were single crystal CdS, (ZnCd)S, CdSe, CdTe and ZnS, and polycrystalline CdS films. Undoped, single crystal CdS contained four electron traps as detected by DLTS, at 0.29eV, 0.41eV, 0.61eV and 0.74eV below the conduction band (CB). The first two were observed in all samples and were due to native defects. The two states of highest energy were found only in material that had been annealed in S or Cd vapours. The 0.61ev level could be photoinduced by illumination at photon energies greater than about 1eV. It decayed in the dark with an activation energy of 0.25eV. The 0.61eV and 0.74eV centres were associated with electrically active extended defects (subgrain boundaries Such samples had dislocation densities of about 10(^10) cm(^-2). Copper was found to be a residual impurity in CdS. It produced two deep hole traps resulting from a crystal field splitting of the Cu d(^9) state. They were detected by ODLTS and DLOS and were found at 0.35eV and 1.lev above the valence band (VB).Introduction of the isoelectronic impurity tellurium into CdS induced a hole repulsive centre at 0.21eV above the VB. This is thought to be an inportant radiative recombination centre. The main electron trap in CdS at 0.41eV was found to shift to higher energy with incorporation of Zn. Replacement of 20% of the Cd with Zn shifted the energy to 0.63eV. The level appeared fixed to the VB and had a similar functional dependence on composition as the band gap. The activation energies of the copper centres observed in CdS remained unchanged with incorporation of Zn up to the composition (^Zn)0.45 (^cd)0.55(^s) showed that the crystal field splitting was constant and that these levels were also pinned to the VB. During the fabrication process of the (ZnCd)S/Cu(_2)S solar cell, a deep level was induced at about 1.2eV below the CB. This is thought to be a recombination centre and one of the contributory factors to the reduction observed in the current collection efficiency of these devices. Polycrystalline CdS films were prepared by silk screen printing (SP) and evaporation. The SP films were annealed at various times and temperatures to improve the crystallinity of the layers. At 640C for 1hr, deep states at 0.16eV and 0.48eV were detected. The levels disappeared when annealed at 670C-700C and a new level was observed at 0.13eV. CdS/Cu(_2)S heterojunctions were prepared on the material sintered at 670C; this induced a further trapping level at 1.1eV and one that was poorly resolved. Copper diffused into the CdS during the fabrication of the device so the states associated with copper were detected at 0.35eV and 1.1eV, The evaporated CdS layers showed that the defect signature was sensitive to the type of substrate. Using Ag instead of the usual SnO(_x), deep states were induced at 0.48eV and 0.98eV below the CB. These Ag-associated impurity centres prevent the indiffusion of Cu during the optimising heat treatment of the CdS/Cu(_2)S heterojunction. This maintains the stoichicmetry of the Cu(_2)S layer, thereby, preventing degradation of the devices. CdSe and copper doped CdSe were found to contain several important defect centres: a native sensitising centre (0.64eV from the VB), a class I recombination centre (0.9eV from the CB), a copper impurity centre (0.2eV from the CB) and two native defects (0.16eVand 0.45eV from the CB). n-type CdTe grown by the Piper-Polich technique contained6 electron traps at 0.15eV, 0.21eV, 0.40eV, 0.47eV, 0.53eV and 0.63eV. Their presence was shown to be dependent upon the method of growth of the crystal by comparing with material grown by other techniques. One or more of these states were thought to be due to extended defects or Te precipitates. Low resistivity ZnS contained two deep electron traps at 0.25eV and O.50eV as detected by DLTS. In addition DLOS showed the presence of four further states at 1.25eV, 1.37eV, 1.89eV and 2.19eV below the CB. The first two are thought to be the strong luminescence centres observed by other workers.
3

Rueda-Fonseca, Pamela. "Magnetic quantum dots in II-VI semiconductor nanowires." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GRENY015/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Dans ce travail de thèse a été développé et étudié un nouveau type d'objet semiconducteur magnétique : des boîtes quantiques de CdMnTe insérées dans des nanofils de ZnTe/ZnMgTe constituant une structure de type cœur-coquille. L'objectif était d'étudier la croissance par épitaxie par jets moléculaires et les propriétés fondamentales de ces hétéro-structures complexes. Dans ce but deux aspects principaux ont été abordés : i) la qualité et le contrôle des propriétés structurales, électroniques et magnétiques de ces objets, grâce à une maîtrise de leur croissance et ii) l'obtention d'informations quantitatives locales sur la composition chimique de ces nanostructures inhomogènes. Pour atteindre ces objectifs, nous avons divisé notre étude en quatre étapes. La première étape de ce travail a été concentrée sur l'étude quantitative de la formation des particules d'or servant de catalyseurs à la croissance des nanofils. La seconde étape a porté sur l'analyse des mécanismes de croissance et des paramètres gouvernant la croissance des fils de ZnTe. En particulier deux types de fils ont été observés : des fils cylindriques de structure wurtzite et des fils coniques de structures zinc-blende. Un modèle de croissance guidée par la diffusion a été utilisé pour rendre compte de certains des résultats quantitatifs présentés dans cette partie. La troisième étape a concerné l'insertion de boîtes quantiques de CdMnTe dans des nanofils de structure cœur-coquille ZnTe/ZnMgTe. Une étude préalable des paramètres pertinents influençant les propriétés magnéto-optiques de ces objets, tels que le confinement de la boîte quantique, l'incorporation du Mn et l'anisotropie de contrainte créée par la structure, a été menée. La quatrième et dernière étape de ce travail a porté sur l'interprétation quantitative de mesures d'analyse dispersive en énergie effectuées sur des nanofils de structure cœur-multicoquille. Un modèle géométrique a été proposé, permettant de retrouver la forme, les dimensions et la composition chimique des boîtes quantiques et des coquilles. Cette étude a été couplée à des mesures de caractérisation telles que la cathodo-luminescence, la micro-photo-luminescence et la spectroscopie magnéto-optique effectuées sur le même nanofil
In this PhD work a novel type of magnetic semiconductor object has been developed: Cd(Mn)Te quantum dots embedded in ZnTe/ZnMgTe core-shell nanowires. The goal was to investigate the growth, by molecular beam epitaxy, and the fundamental properties of these complex heterostructures. For that purpose, two main issues were addressed: i) gaining control of the structural, electronic and magnetic properties of these quantum objects by mastering their growth; and ii) obtaining quantitative local knowledge on the chemical composition of those non-homogeneous nanostructures. To tackle these topics, our research was divided into four stages. The first stage was devoted to perform a quantitative study of the formation process of the Au particles that catalyze the growth of nanowires. The second stage involved the analysis of the mechanisms and parameters governing the growth of ZnTe nanowires. In particular, two different types of nanowires were found: cone-shaped nanowires with the zinc-blende crystal structure and cylinder-shaped nanowires with the hexagonal wurtzite structure. A diffusion-driven growth model is employed to fit some of the quantitative results presented in this part. The third stage focused on the insertion of pure CdTe quantum dots containing Mn ions in the core-shell nanowires. An initial study of the relevant parameters influencing the magneto-optical properties of these objects, such as the quantum dot confinement, the Mn incorporation, and the strain anisotropy, was performed. The four and last stage of this work concerned the quantitative interpretation of Energy-Dispersive X-ray spectroscopy measurements performed on single core-multishell nanowires. A geometrical model was proposed to retrieve the shape, the size and the local composition of the quantum dot insertions and of the multiple layers of the heterostructures. This study was coupled to other complementary characterization measurements on the same nanowire, such as cathodo-luminescence, micro-photo-luminescence and magneto-optical spectroscopy
4

Zhao, Lijuan. "Chemical syntheses and characterizations of II-VI semiconductor nanocrystals /." View abstract or full-text, 2007. http://library.ust.hk/cgi/db/thesis.pl?PHYS%202007%20ZHAO.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Luo, Ming. "Transition-metal ions in II-VI semiconductors ZnSe and ZnTe /." Morgantown, W. Va. : [West Virginia University Libraries], 2006. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=4630.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (Ph. D.)--West Virginia University, 2006.
Title from document title page. Document formatted into pages; contains xiv, 141 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 135-141).
6

Sugunan, Abhilash. "Fabrication and Photoelectrochemical Applications of II-VI Semiconductor Nanomaterials." Doctoral thesis, KTH, Funktionella material, FNM, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-95410.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this work we investigated fabrication of semiconductor nanomaterials and evaluated their potential for photo-chemical and photovoltaic applications. We investigated different II-VI semiconductor nanomaterial systems; (i) ZnO oriented nanowire arrays non-epitaxially grown from a substrate; and (ii) colloidal CdE (E=Te,Se,S) quantum structures synthesized by solution-based thermal decomposition of organo-metallic precursors. We have studied the synthesis of vertically aligned ZnO nanowire arrays (NWA), by a wet chemical process on various substrates. We have extended this method wherein nanofibers of poly-L-lactide act as a substrate for the radially oriented growth of ZnO nanowires. By combining the large surface area and the flexibility of the PLLA-ZnO hierarchical nanostructure we have shown the proof-of-principle demonstration of a ‘continuous-flow’ water treatment system to decompose known organic pollutants in water, as well as render common waterborne bacteria non-viable. We have studied synthesis of colloidal quantum dots (QD), and show size, morphology and composition tailored nanocrystals for CdE (E=S, Se, Te) compositions. We have studied the influence of crystal growth habits of the nanocrtsyals on the final morphology. Furthermore we have synthesized core-shell, CdSe-CdS QDs with spherical and tetrahedral morphologies by varying the reaction conditions. We show that these core-shell quantum dots show quasi-type II characteristics, and demonstrate with I-V measurements, the spatial localization of the charge carriers in these hetero-nanocrystals. For this purpose, we developed hybrid materials consisting of the core-shell quantum dots with electron acceptors (ZnO nanowires) and hole acceptors (polymeric P3HT nanofibers). In addition we have also compared the synthesis reaction when carried out with conventional heating and microwave-mediated heating. We find that the reaction is enhanced, and the yield is qualitatively better when using microwave induced heating.
QC 20120525
7

Shahid, Robina. "Green Chemical Synthesis of II-VI Semiconductor Quantum Dots." Doctoral thesis, KTH, Funktionella material, FNM, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-104980.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Nanotechnology is the science and technology of manipulating materials at atomic and molecular scale with properties different from bulk. Semiconductor QDs are important class of nanomaterials with unique physical and chemical properties owing to the quantum confinement effect. Size dependent optical properties make research on semiconductor QDs more attractive in the field of nanotechnology. Semiconductor QDs are usually composed of combination of elements from groups II–VI, III–V, or IV–VI of the periodic table. Group II-VI semiconductor QDs (ZnS, ZnSe, ZnO, CdSe, CdS) are most extensively studied systems, having bandgap which can be engineered through the variation of the material composition and size. Most common QDs are made of CdE (E=S, Se, Te) which are toxic. Recent environmental regulations restrict the use of toxic metals and therefore QDs containing nontoxic metals such as Zn are of great importance. The chemical synthesis of QDs involves different methods. Usually high temperature thermal decomposition of organometallic compounds in high boiling point organic solvents is used which needs long reaction time and involves complex synthesis procedures. New simpler and efficient synthetic routes with alternative solvents are required. Recently the synthesis of non-toxic QDs using green chemical routes is a promising approach receiving increasing attention. The aim of this Thesis is to develop novel routes for synthesis of semiconductor QDs employing green nanomaterial synthesis techniques. Therefore, in this work, we developed different green chemical routes mainly for the synthesis Zn-based QDs. Low temperature synthesis routes were developed for the synthesis of ZnS and ZnO QDs. Microwave irradiation was also used as efficient heating source which creates numerous nucleation sites in the solution, leading to the formation of homogeneous nanoparticles with small size and narrow size distribution. Different polar solvents with high MW absorption were used for synthesis of ZnS QDs. We also introduced ionic liquids as solvents in the synthesis of ZnS QDs using microwave heating. ILs are excellent reaction media for absorbing microwaves and are recognized as ‘green’ alternative to volatile and toxic organic solvents. For ZnS systems, the QDs produced by different methods were less than 5 nm in size as characterized by high-resolution transmission electron microscopy (HR-TEM). Selected area electron diffraction (SAED) patterns revealed that ZnS QDs synthesized by low temperature synthesis technique using conventional heating are of cubic crystalline phase while the QDs synthesized by using MW heating are of wurtzite phase. The optical properties were investigated by UV-Vis absorption spectrum and show a blue shift in absorption as compared to bulk due to quantum confinement effect. The photoluminescence (PL) spectra of ZnS QDs show different defect states related emission peaks and depend on different synthesis methods, high bandedge related emission is observed for ZnS QDs synthesized by using ionic liquids. ZnO QDs synthesized by low temperature route were found to be less than 4 nm in size and also show a blue shift in their absorption. The PL spectrum show bandedge related emission which is blue shifted compared with bulk with no emission originating from surface defect levels. The results show that QDs are of high crystalline quality with narrow size distribution. A comparative study of using conventional and MW heating in the synthesis of CdSe QDs was performed. The reactions involving microwave heating showed enhanced rates and higher yields. The developed methods involve all principles for green nanomaterials synthesis i.e. design of safer nanomaterials, reduced environmental impact, waste reduction, process safety, materials and energy efficiency.

QC 20121115

8

Pawlis, Alexander. "Development and investigation of II-VI semiconductor microcavity structures." [S.l. : s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=971579598.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lee, Hyeokjin. "Synthesis and characterization of colloidal II-VI semiconductor nanorods." [Gainesville, Fla.] : University of Florida, 2005. http://purl.fcla.edu/fcla/etd/UFE0012984.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sugunan, Abhilash. "Photochemical and Photoelectric Applications of II-VI Semiconductor Nanomaterials." Licentiate thesis, KTH, Functional Materials, FNM, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-12808.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:

In this work we investigated fabrication of semiconductor nanomaterials and evaluated their potential for photo-chemical and photovoltaic applications. We investigated two different II-VI semiconductor nanomaterial systems; (i) ZnO oriented nanowire arrays non-epitaxially grown from a substrate; and (ii) colloidal CdTe nanotetrapods synthesized by solution-based thermal decomposition of organo-metallic precursors. In both the cases our main focus has been optimizing material synthesis for improving potential applications based on photon-electron interactions.

We have studied the synthesis of vertically aligned ZnO nanowire arrays (NWA), by a wet chemical process on various substrates. The synthesis is based on epitaxial growth of ZnO seed-layer on a substrate in a chemical bath consisting of an aqueous solution of zinc nitrate and hexamethylenetetramine (HMT). We have suggested an additional role played by HMT during the synthesis of ZnO nanowire arrays. We have also extended this synthesis method to fabricate hierarchical nanostructures of nanofibers of poly-L-lactide acting as a substrate for the radially oriented growth of ZnO nanowires. The combination of high surface area of the nanofibrous substrate with the flexibility of the PLLA-ZnO hierarchical nanostructure enabled the proof-of-principle demonstration of a ‘continuous-flow’ water treatment system that could effectively decompose single and combination of known organic pollutants in water, as well as render common waterborne bacteria nonviable.

We have studied another chemical synthesis that is commonly used for size controlled synthesis of colloidal quantum dots, which was modified to obtain anisotropic nanocrystals mainly for CdE (E=S, Se, Te) compositions. In this work we demonstrate by use of oleic acid (instead of alkylphosphonic acids) it is possible to synthesize CdTe and CdSe nanotetrapods at much lower temperatures (~180 ºC) than what is commonly reported in the literature, with significantly different  formation mechanism in the low-temperature reaction.

Finally, we have performed preliminary photoconduction measurements with CdTe nanotetrapods using gold ‘nanogap’ electrodes fabricated in-house, and obtain up to 100 times enhancement in current levels in the I–V measurements under illumination with a white light source.


QC20100607

Книги з теми "Semiconductor II-VI":

1

Adachi, Sadao. Properties of semiconductor alloys: Group-IV, III-V and II-VI semiconductors. Chichester, West Sussex, U.K: Wiley, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Adachi, Sadao. Properties of semiconductor alloys: Group-IV, III-V and II-VI semiconductors. Chichester, West Sussex, U.K: Wiley, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ignatowicz, Stanisław. Semiconducting thin films of A II B VI compounds. Chichester: E. Horwood, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

International Symposium on Silicon Molecular Beam Epitaxy (6th 1995 Strasbourg, France). Selected topics in group IV and II-VI semiconductors: Proceedings of Symposium L, 6th International Symposium on Silicon Molecular Beam Epitaxy, and Symposium D on Purification, Doping and Defects in II-VI Materials of the 1995 E-MRS Spring Conference, Strasbourg, France, May 22-26, 1995. Amsterdam: Elsevier, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Jacoboni, Carlo. The Monte Carlo method for semiconductor device simulation. Wein: Springer-Verlag, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Boyce, Paul John. Raman spectroscopy of II-VI semiconductors. Norwich: University of East Anglia, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Graham, Paul Andrew. A feasibility study of a simulated low level optical architecture based on the performance of II-VI semiconductor devices in close proximity with dichromated gelatin holographic interconnects. Manchester: University of Manchester, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bhargava, Rameshwar. Properties of wide bandgap II-VI semiconductors. London, U.K: IEE, INSPEC, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

International Conference on II-VI Compounds (4th 1989 Berlin). II-VI compounds 1989: Proceedings of the Fourth International Conference on II-VI Compounds, Berlin (West), 17-22 September 1989. Amsterdam: North-Holland, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

International Conference on II-VI Compounds (4th 1989 Berlin). II-VI compounds 1989: Proceedings of the Fourth International Conference on II-VI Compounds, Berlin (West), 17-22 September 1989. Amsterdam: North-Holland, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Semiconductor II-VI":

1

Feuillet, G. "II-VI Semiconductor Interfaces." In Evaluation of Advanced Semiconductor Materials by Electron Microscopy, 33–45. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0527-9_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Akimov, Ilya, Joachim Puls, Michael Rabe, and Fritz Henneberger. "Visible-Bandgap II–VI Quantum Dot Heterostructures." In Semiconductor Nanostructures, 237–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-77899-8_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Million, A. "Molecular Beam Epitaxy of II-VI Compounds." In Heterojunctions and Semiconductor Superlattices, 208–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-71010-0_16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wuister, S. F. "Optical properties of II–VI semiconductor nanocrystals." In Spectroscopy of Systems with Spatially Confined Structures, 705. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0287-5_25.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ricolleau, C., L. Audinet, M. Gandais, and T. Gacoin. "Structural transformations in II-VI semiconductor nanocrystals." In The European Physical Journal D, 565–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-88188-6_114.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Schetzina, J. F., N. C. Giles, S. Hwang, and R. L. Harper. "Photoassisted Doping of II-VI Semiconductor Films." In Growth and Optical Properties of Wide-Gap II–VI Low-Dimensional Semiconductors, 129–37. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4684-5661-5_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Rogach, Andrey L. "Optical Properties of Coloidally Synthesised II-VI Semiconductor Nanocrystals." In Optical Properties of Semiconductor Nanostructures, 379–93. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4158-1_38.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bhargava, R. N. "II-VI Semiconductor Materials and Devices — Recent Progress." In Proceedings of the 17th International Conference on the Physics of Semiconductors, 1531–36. New York, NY: Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4615-7682-2_347.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Mönch, Winfried. "Cleaved {110} Surfaces of III–V and II–VI Compound Semiconductors." In Semiconductor Surfaces and Interfaces, 93–129. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-662-03134-6_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mönch, Winfried. "Cleaved {110} Surfaces of III–V and II–VI Compound Semiconductors." In Semiconductor Surfaces and Interfaces, 84–116. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-662-02882-7_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Semiconductor II-VI":

1

Waag, Andreas, Frank Fischer, H. J. Lugauer, Karl Schuell, U. Zehnder, T. Gerhard, M. Keim, G. Reuscher, and Gottfried Landwehr. "Beryllium-containing II-VI semiconductor devices." In Optoelectronics and High-Power Lasers & Applications, edited by Marek Osinski, Peter Blood, and Akira Ishibashi. SPIE, 1998. http://dx.doi.org/10.1117/12.316665.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Yao, Takafumi. "Atomic Layer Epitaxy Of II-VI Compounds." In 1988 Semiconductor Symposium, edited by Anupam Madhukar. SPIE, 1988. http://dx.doi.org/10.1117/12.947375.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Schaake, Herbert F. "TEM Characterization of II-VI Compound Semiconductors." In 1988 Semiconductor Symposium, edited by Orest J. Glembocki, Fred H. Pollak, and Fernando A. Ponce. SPIE, 1988. http://dx.doi.org/10.1117/12.947430.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gunshor, R. L., L. A. Kolodziejski, N. Otsuka, and A. v. Nurmikko. "Growth And Characterization Of Wide Gap II-VI Heterostructures." In Semiconductor Conferences, edited by Sayan D. Mukherjee. SPIE, 1987. http://dx.doi.org/10.1117/12.941038.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kurtz, Elisabeth. "SELF-ORGANIZED II-VI SEMICONDUCTOR QUANTUM ISLANDS." In Proceedings of the 16th Course of the International School of Atomic and Molecular Spectroscopy. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812810960_0038.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Berroir, J. M., and Y. Guldner. "II-VI Semiconductor Superlattices : New Infrared Materials." In 1986 International Symposium/Innsbruck, edited by Jean Besson. SPIE, 1986. http://dx.doi.org/10.1117/12.938534.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Haberern, Kevin W., Sharon J. Flamholtz, Ronald R. Drenten, and Raymond Vanroijen. "Device processing of II-VI semiconductor lasers." In Photonics for Industrial Applications, edited by Robert L. Gunshor and Arto V. Nurmikko. SPIE, 1994. http://dx.doi.org/10.1117/12.197258.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Neuendorf, Rolf, Adriane Brysch, Giorah Bour, and Uwe Kreibig. "Optical properties of II-VI semiconductor nanoparticles." In International Symposium on Optical Science and Technology, edited by Aaron Lewis, H. Kumar Wickramasinghe, and Katharina H. Al-Shamery. SPIE, 2001. http://dx.doi.org/10.1117/12.449536.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bacher, G., D. Eisert, T. Kümmell, A. Forchel, M. Kühnelt, H. P. Wagner, and G. Landwehr. "Implantation induced changes in II-VI semiconductor heterostructures." In The fifteenth international conference on the application of accelerators in research and industry. AIP, 1999. http://dx.doi.org/10.1063/1.59292.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Vasiliev, Igor. "Ab initio study of group II-VI semiconductor nanocrystals." In SPIE NanoScience + Engineering, edited by Oleg V. Prezhdo. SPIE, 2010. http://dx.doi.org/10.1117/12.862457.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Semiconductor II-VI":

1

Kelley, David F. Charge separation sensitized by advanced II-VI semiconductor nanostructures. Office of Scientific and Technical Information (OSTI), April 2017. http://dx.doi.org/10.2172/1350954.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Girndt, A., F. Jahnke, A. Knorr, S. W. Koch, and W. W. Chow. Multi-band Bloch equations and gain spectra of highly excited II-VI semiconductor quantum wells. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/486170.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Semendy, Fred, Neal Bambha, Marie C. Tamargo, A. Cavus, and L. Zeng. Etch Pit Studies of II-VI-Wide Bandgap Semiconductor Materials ZnSe, ZnCdSe, and ZnCdMgSe Grown on InP. Fort Belvoir, VA: Defense Technical Information Center, October 1999. http://dx.doi.org/10.21236/ada372188.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Metzger, Wyatt K. Photovoltaic Cells Employing Group II-VI Compound Semiconductor Active Layers: Cooperative Research and Development Final Report, CRADA Number CRD-09-325. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1475129.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bhat, Ishwara B. Epitaxial Lateral Overgrowth of II-VI Semiconductors. Fort Belvoir, VA: Defense Technical Information Center, February 2001. http://dx.doi.org/10.21236/ada389229.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Zhang, Yong-Hang. Multicolor (UV-IR) Photodetectors Based on Lattice-Matched 6.1 A II/VI and III/V Semiconductors. Fort Belvoir, VA: Defense Technical Information Center, August 2015. http://dx.doi.org/10.21236/ada622826.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії